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Flux-Sensitive Correlations of Mutually Incoherent Quantum Channels
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A two-particle state can be sensitive to a magnetic flux through exchange even if it is composed of
single-particle states which on the average are statistically uncorrelated and exhibit no direct interfer-
ence. Consequently, two-particle observables can be sensitive to a flux even if all single-particle observ-
ables are flux insensitive. We investigate exchange effects in current cross correlations of small conduc-
tors subject to a magnetic field.

PACS numbers: 72. 10.Bg, 05.30.—d, 73.50.Td

In a 1963 paper Goldberger, Lewis, and Watson [I]
analyzed scattering geometries in which a target is il-

luminated by two mutually incoherent sources and in

which the intensity cross correlation is measured with the
help of two detectors. Remarkably, the intensity cross
correlation yields phase information despite the fact that
the sources are entirely independent. A striking demon-
stration of this efl'ect could be obtained for charged car-
riers since an Aharonov-Bohm (AB) flux [2] can be used
to modulate the phase of the correlation function [3]. In

this paper we illustrate the origin of this eA'ect by calcu-
lating the density-density correlation for electronic beams
in the presence of an AB flux. We demonstrate that the
interference structure in the Fermi hole [4] can be modu-
lated with an AB flux even if none of the single-particle
states is sensitive to the flux. Experimental tests of these
predictions can be carried out in vacuum using electron
microscopes or field emission from tunneling microscope
tips as sources. A discussion which focuses on the reali-
zation of such an experiment in conductors has, however,
a number of advantages. First, a simple description of
sources (current contacts) and detectors (voltage con-
tacts) exists [5] and has been experimentally tested [6].
Second, the current correlations for this approach have
been calculated in the framework of second quantization
[3,7,8] and can be compared with discussions using wave

packets impinging on the conductor [9] and with a semi-
classical analysis [10]. Third, the S-matrix description of
electric conduction makes the constraints on any electron
current pattern due to current conservation and mi-
croreversibility particularly clear and prevents us from
proposing a geometry which does not obey these basic
constraints. We analyze the current correlations across
two contacts of a small conductor in which a magnetic
field permits the phase of the correlation function to
change.

The phase information in the correlation function of
mutually incoherent beams points to the interesting possi-
bility that in addition to direct interference of partial
waves quantum mechanics off'ers a second mechanism to
generate interference via exchange These two p. ossibili-
ties are discussed with the help of Fig. 1. Figure 1(a)
shows the typical AB geometry [2,1I] in which a wave
emitted by a source S reaches a sink S. The wave is split
into two partial waves p] and p2 which encircle the flux

and are recombined. If there are many quantum chan-
nels (incident waves specified by dilferent quantum num-

bers) connecting the source and sink, then each quantum
channel can be treated as if it were incoherent with all
other channels. In Fig. 1(a) the flux sensitivity of the
electronic states is a consequence of direct inrerference of
the partial waves. In Fig. 1(b) two waves emanate from
diA'erent sources. One channel is guided on an upper arc
around the flux and one channel on a lower arc around
the flux. There is no elastic scattering from one of these
states to the other. Neither of the two waves by itself
encircles the flux. We deal with mutually incoherent
quantum channels that exhibit no direct interference and
consequently exhibit no response to a change in the AB
flux. However, if there is an overlap of the wave func-
tions in the regions 0] and 02 to the left and right of the
flux, we must satisfy the Pauli principle and consider two-
(or many-) particle states. Interestingly, the two particle-
state is sensitive to the AB flux even if the single-particle
states are not. To show this we now analyze Fig. 1(b) in

detail.
Assume that the waves shown in Fig. 1(b) represent

transmission channels of a conductor. We assume that
the potential provided by the conductor is fixed in time
and does not fluctuate. Regions O~ and 02 are very nar-

(a)

(b) 0) Op
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FIG. I. (a) Direct interference: Wave transmitted from

source (S) to sink (S) is split into partial waves encircling the
flux. (b) Exchange interference: Two waves transmitted from
sources to sinks without encircling the flux but with an overlap
in regions Ol and O..

843



VOLUM E 68, NUM BER 6 PH YSICAL REUI EW LETTERS 10 FEBRUARY 1992

p~(r~) =e g](y~),

y~(r ~ ) =e ' 'g2(y
~ ) . (2)

At a point r~=(x2,y2) in region Oz the wave functions

row portions of the conductor in which the transverse
wave functions overlap. Direct interference caused by in-
terchannel scattering induced by disorder is assumed to
be absent. These stringent conditions are very nearly
satisfied at a quantized conductance plateau of a quan-
tum point contact formed in a two-dimensional constrict-
ed high-mobility electron gas [12]. Two of these contacts
separated by an intervening circular region [13] provide a
realization of the current pattern of Fig. 1(a): The large
separation of the electron states in the circular region be-
tween the contacts can be achieved with a magnetic field
with a cyclotron radius which is small compared to the
diameter of the circular region but is large compared to
the lateral width of the contacts. Here we wish to make a
conceptual point and for clarity deal with electrons guid-
ed by scalar potentials (no magnetic field). We assume
that the transverse motion of the electrons in channels 1

and 2 is quantized and described by wave functions g~(y)
and g2(y). Here y is the transverse coordinate. The lon-

gitudinal motion along the narrow wire is given by e' ".
At a point r~ =(x~,y~) region O~ the single-particle wave

functions are

are

y)(r~) =e' "'g((y~)e' 'e'

yi(r2) =e ' 'g~(y~)e 'e

where p~ 2 take into account the excess path due to
motion along the arcs and

r2

„„ds, A
Ac

is the phase due to the AB flux. In Eq. (5) the integral
for et is along the upper arc and ez is along the lo~er
arc and A is the vector potential. Clearly, e =-e,
—e2=2~/@0, where @ is the flux and @ 0=he/e. Note
that the absolute squares of the single-particle wave func-
tions l y~ 2l are independent of the flux. However, the
two-particle wave function

O(r ~, r ~) —= ly~ (r
~
) p~(r ~) —

y~ (r2) y~(r ~ )

=e'"lg) (y ()g.(y2) —g) (y2)gz(y ))e"], (6)

where po =—k ~x ~+k.x~+p2+e2 and

y—= (k )
—k~) (x —x ) )+ (y) —y2)+e, (7)

depends through p in an essential way on the flux. Next
we compare the probability density 8'~~~ = t%'(r ~, r2) l

'- of
the two-particle state with the symmetrized single-state
density W ' . The difference h W = W -' —W ' is a
measure of correlations not contained in the single-
particle states. We find

aw(r~, rz) =I+(r~, rz)t —[lyt(r1)l ty&(rz)t +I@i(rz)l'ly2(ri)l ] =
y~ (r1)yz(r~)yq (r2)y~(r2) —c c. , (8)

and using the single-particle states as given above,

AW(r ~,r ~) = —
2g~ (y ~ )gz(y2)g[ (y2)g2(y [)cos(lp) . (9)

Thus the portion of W which is sensitive to the flux has
an amplitude that is a product in which each transverse
wave function occurs twice but is taken at different loca-
tions. The flux sensitivity is due to an exchange effect.
In the two-particle state we cannot distinguish between
carriers which passed the flux in the upper or lower arc of
Fig. 1(b).

The exchange amplitude in Eq. (9) is zero if the trans-
verse wave functions do not overlap (have no common
support). Suppose that we are interested not in the
density t+(r~, r2)l-', but only in the line density

Jdy~ dy~t+(r~, rz) l-. In this case the orthogonality of the
transverse wave function guarantees that the exchange
term vanishes. Exchange effects in the line density can
only occur from states k which belong to the same quan-
tum channel (i.e., if gf —g2).

So far we have considered well-defined states k] and kz
and their two-particle state. If the states k~ and kz are
produced by sources (electron reservoirs), the phase of
each of these states is a random variable without mutual
correlation. Furthermore, due to thermal agitation, the
probability of occupation (whether these states are actu-
ally filled or are empty) is also a fluctuating quantity.
Second ouantization provides a convenient framework to
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discuss such fluctuations. The field operator is 4'(r)
=g„y;(k„;,r)ai... where ai... annihilates an electron
with wave vector k; in the source a. The average density
(n(r)) =(4' (r)+(r)) is simply P„;ty,(k„)l f (k„).
Here we have assumed that two waves k„and k~3,

are on the statistical average uncorrelated, (aq, a ~,1)

=6', phi. ..i, ,f,(k„). Following Ref. [4] we calculate the
equal time correlation (hn(r ~)An(r~)) of the density fluc-

tuations hn(r~) =n(r~) —(n(r~)). For r~er2, the den-

sity-density correlation function is

(hn (r
~ )hn (r ~ ) ) = g 6~(r ~, r q,k„,k p~ )f,(k; )fp(k p, ) .

af3ij

(10)

It is determined by two-particle excitations. h, W is given

by Eq. (8) with the wave function indices 1 and 2 re-
placed by k; and k~3j. For a three-dimensional electron
gas evaluation of Eq. (10) without a flux gives the Fermi
correlation hole. At kT=O and at equilibrium, it is pro-
portional to the electron density and decays with distance
r = tr ~

—r2t like cos (kyar)/r For the quasi-one-.
dimensional situation of Fig. 1(b) it decays with distance
like 1/s- with s =x, —x+(n —

1 )R. R is the radius of

the arcs in Fig. 1(b). Most importantly, there is now an

exchange contribution to the correlation function which is

proportional to sin-(I Fs/2)cos(2~/@o). The interfer-
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ence structure of the Fermi hole is modulated by the AB
flux.

Exchange interference survives statistical averaging: It
is sensitive to an AB flux even if the single-particle chan-
nels are mutually incoherent.

Next, we investigate current-current fluctuations at the
contacts of a conductor. What counts experimentally are
not current densities but the total current at a contact.
At a contact the current density is integrated over the
cross section of the contact. As in our discussion of the
line density given above, the integration results in the el-
imination of many exchange effects. At equilibrium the
current correlations, via the fluctuation dissipation the-
orem, are related to the equilibrium transport coefficients.
In the zero-frequency limit, the equilibrium transport
coefficient is a single-particle observable and consequently
is a sum of incoherent single-particle contributions. This
leaves open the possibility that exchange correlations ap-
pear in a nonequi)ibrium situation, i.e., if a net current is
driven through the sample. Indeed, for a two-terminal
conductor [3,7-10], the current fluctuations ((AI ~ ) )
=((612) ) at zero temperature are proportional to the

chemical potential difference (p~
—p2( and are propor-

tional to Tr(r rttt). Here t and r are the matrices of
transmission amplitudes and reflection amplitudes. The
cross correlation of the currents at the two ports is
(hI)hl~) = —((hl))-) due to current conservation [3].
Therefore, the exchange terms invoke both reflection and
transmission amplitudes. It is not possible to observe ex-
change effects without introducing reflection. Typically
reflection gives rise to direct interference and therefore, in

a two-terminal structure, the distinction between direct
interference and exchange interference is difficult. Thus
it is necessary to consider a multiprobe geometry.

Consider a multiprobe conductor with contacts labeled
a=1,2, 3, , . . . Denote the scattering matrix that deter-
mines the outgoing current amplitudes in contact a in
terms of the incoming amplitudes at contact P by s,p. At
kT=0, in a frequency interval h, v, the spectral density of
the current-current correlations [7) is given by

(~1.~1,)

=26,v(e 2/h ) g dE f„(l —fb)Tr(s. &s.qspbsp„) .
y, b(y&b)

(11)
ln Eq. (I I) the Fermi function f, is I for energies below

p, and is 0 for energies above p . For a=P, Eq. (11)
gives the mean square current fluctuations at a contact.
For a&P, Eq. (I I ) determines the cross correlation of the
current fluctuations. Taking into account that the ma-
trices s & are submatrices of a large matrix S which is
unitary, it can be shown that the terms in Eq. (11) linear
in the Fermi distribution add up to zero. Hence, the
current cross correlation depends, like the density-density
correlation in Eq. (10), on the products f„fq of Fermi
functions. Like the density correlation Eq. (10), the
current cross correlations are a measure of the population

of two-particle states.
Let us now consider a geometry in which direct in-

terference effects are small. Figure 2 schematically de-

picts a two-dimensional conductor in a quantizing mag-
netic field [14]. At the upper edge two well-separated

edge states [15] provide channels along which carriers
can be propagated with a transmission probability close
to I [16] from contact I to contact 2. A large separation
of the edge states can be achieved if the potential near
the edge of the conductor can be arranged to vary
smoothly compared to the cyclotron energy [17]. Two in-

terior contacts [I8] (3 and 4) are located between the two

edge channels. To find an exchange effect it is necessary
for the interior contact to couple with both edge channels
simultaneously. As a consequence the interior contacts
also lead to channel mixing: A wave incident in channel
1 can, via the interior contact, transmit a partial wave

into channel 2 which with the help of contact 4 can be
recombined with the partial wave in channel 1. Mixing
gives rise to direct interference and gives rise to an ordi-

nary AB effect. However, in the geometry of Fig. 2 the
mixing of channels can be made smaller than the direct
coupling of the edge channels to the interior contact. If
the interior contact couples weakly to the edge states with

a transmission probability T, then channel mixing is pro-
portional to T-.

Let us denote the scattering matrix which relates the
incoming current amplitudes a; in the edge states
(i =1,2) and the interior contact (i =3) to the "outgo-
ing" current amplitudes a~' by a~;. A matrix which is uni-

tary and symmetric and has the desired properties can be
specified as follows [19]. The direct coupling elements
are a3~ =a~2=v T/2, the mixing element is az~
= —. (v'I —T —I), the matrix element for transmission

along the edge states is a~~ =a22= —'(v'I —T+ I) and

reflection back into the interior contact is determined by
a33 —4 I

—T. With these specifications applied to both
interior contacts, the calculation of the overall scattering
matrix of the conductor is now carried out readily. To
simplify the notation we keep only the channel indices (as
given in Fig. 2) for the overall scattering matrix elements
and omit the probe indices. To leading order in T the
relevant matrix elements are s&~ =(T/2)' -', s3z=(T/

Iy
I 5~

o
6

FlG. 2. Conductor with two edge states at the upper bound-
ary coupling with interior contacts 3 and 4.
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2)"-, and

54~ =(T/2) '/ e'-e '+O(T /'- ),
~4( =(T/2) "e"e' '+O(T "')-. -

(i 2)

(i 3)

To order T all transmission probabilities Tj=~s;;~ are
independent of N.

Suppose now that contacts 1 and 2 of the conductor in

Fig. 2 are both kept at the potential p and contacts 3 and
4 are both kept at po(p. Using Eq. (I I) we find to
lowest order in T

((AI3) & =2e/5, v(e/h)T(p —po)+O(T2) . (i4)

where 8 =2~/Ao. Note that we have obtained Eq. (15)
from a scattering matrix which contains no direct in-

terference. The flux dependence of the current-current
correlation function, Eq. (I5), again, is a consequence of
exchange. Carriers from quantum channels 1 and 2 are
scattered into the same outgoing channel in either contact
3 or 4. It is not possible to distinguish the path which a
carrier took to arrive in this outgoing channel. Thus it is

plausible that the system responds as if carriers pass the
flux on either side. A possible experimental verification
of this effect requires a careful investigation of the con-
ductances (transmission probabilities) and the cross cor-
relation as a function of the coupling parameter T.
Equation (15) is proportional to T since it is re-lated to
four scattering amplitudes. To order T the transmission
probabilities do exhibit direct interference: For instance,
T4~ contains precisely the term T'c o's(p~ pv+e). An
experiment should compare the conductances with a
cross-correlation function normalized by [((413) &

x((hl4)-'&]'/-. The normalized cross correlation exhibits
flux-sensitive terms proportional to T. The large separa-
tion of the edge states required here can be achieved with

the help of one or two gates near the boundary of the con-

The same result holds for ((/3I4)'&. The cross correlation
(613hl4& is a sum of four terms: sq~s3~s41$4) 4 T
$32$3~$42$4~ = —T'-, the exchange term s3~$3'7$42$4l, and

l

its complex conjugate. The current correlation is

(/31)AI4& = —2eLt, v(e/h)(P —Pp)T cos (|I ~ 4 +e),
(I S)

ductor [17]. Variation of the gate voltage would permit
the position of the edge states to shift with respect to the
interior contacts. Conductances which are suitable for
the experiment would thus emerge.

In conclusion we emphasize that in addition to direct
interference, quantum mechanics leads to interference via

exchange. Experimental demonstration of an interfer-
ence pat tern created via exchange would be very desi r-

able.
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