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On slightly miscut Si(00l) surfaces, straight steps are predicted to be unstable against the formation
of long-wavelength undulations. These undulations lower the energy, by, in effect, reducing the size of
the stress domains; they are thus analogous to the spontaneous step formation proposed by Alerhand et
al. However, step undulations are expected to be kinetically favored, and therefore to preempt spontane-
ous step formation. Moreover, they lead to an unexpected distinct thermodynamic phase in the surface
phase diagram at small angles.

PACS numbers: 68.35.Bs, 68.35.Md

Steps on vicinal Si(001) surfaces have been intensely
studied, especially since Alerhand et al. predicted such
remarkable effects as spontaneous formation of steps [1],
and a transition in step height with angle of miscut [2-4].
However, theoretical analyses to date have universally as-
sumed that these steps are straight, except for random
thermal meandering [1-7]. Yet recently, Tromp and
Reuter [8], using low-energy electron microscopy
(LEEM), observed steps on rather tlat Si(001) surfaces
to be sinuous rather than straight on a submicron length
scale.

Here we show that, for suSciently low step densities,
straight steps are unstable against long-wavelength dis-
tortions, leading to a new phase transition on this surface.
The cause is the interaction between surface stress
domains. These results lead to a new picture of the struc-
ture and phase diagram of vicinal surfaces, and offer a
natural explanation for the remarkable observation of
Tromp and Reuter.

Alerhand et al. first recognized the importance of steps
in creating stress domains on Si(001)2X 1, and showed
that a surface with sufficiently low step density could
reduce its energy by introducing extra steps [1]. Given
the strength of their argument, the failure to observe such
extra steps has been a puzzle. The results here finally
resolve this puzzle —step undulations can relieve stress
and hence preempt the formation of extra steps.

Moreover, such undulations are kinetically preferred.
There is a large barrier to nucleating extra steps, but lit-
tle barrier to step undulations. A1so, during either
growth or sublimation (e.g. , while heat cleaning), step
Aow places severe kinetic constraints on the step geom-
etry. Unlike spontaneous formation of up-and-down

steps, step undulations are compatible with step flow.
We begin by recalling the relevant features of the

Si(001)2X 1 surface, and of the continuum elastic model
which has been successfully used to describe step interac-
tions on this surface [1-5]. For unreconstructed Si(001),
the surface lattice constant in the [110] direction is
a =3.84 A. For a surface miscut by an angle 0 in the
[110] direction, the separation between equally spaced
single-layer steps is

I =a/242tan0.

The Si(001) surface exhibits a 2X 1 reconstruction in

which pairs of atoms form dimers. Because of the atomic
geometry, at single-layer steps the dimerization necessari-

ly rotates by 90', from 2&1 to 1 x 2 or vice versa. If the
dimers on the upper terrace are perpendicular to the step
edge, the step is called [5] S~, or if parallel, Sq.

Because the stress is anisotropic and the domain rotates
90 at a step, the stress is discontinuous at the step. Us-

ing the known [9] stress tensor of the surface, we take the
divergence of the stress to obtain the force on a step, re-
ferred to as a "force monopole" [1,6]. The elastic energy
of the steps is then ——,

' fd x d x'g;, (x —x')f; (x)f~ (x'),
where f; is the force density at the surface, and g is the
elastic Green's function of the surface. We calculate the
Green's function numerically for a semi-infinite geom-
etry, using the full cubic anisotropy with the experimental
elastic constants. For sinusoidal steps, the Fourier trans-
form of the force density can be calculated analytically.
The integral for the elastic energy then transforms into a
reciprocal-lattice sum, which is performed numerically.

The only other property needed to describe the steps is

an energy per length for each type of step (Sq or Sa),
reAecting a "local" energy in addition to the energy of the
strain field. We do not include any "corner energy" [3],
so that we can treat the continuum limit without consid-

ering the microscopic distribution of kinks in the
meandering steps.

We omit thermal and entropic effects here. These have
been extensively discussed already [2-4]. At large step
separations, the steps meander about their minimum-

energy positions. This meandering has a short correlation
length; thus while it results in a renormalization of the lo-
cal energies [2], it should not qualitatively affect the
long-wavelength properties studied here.

We restrict consideration here to equally spaced identi-
cal sinusoidal steps, as shown in Fig. 1. Besides simplify-
ing the elastic calculation, this allows the steps to be fully
characterized by two numbers: the period A, and ampli-
tude 8 of the sine wave. No distinction need be made
here between Sz and Sz steps; because of the symmetri-
cal step pattern assumed, only the sum of their energies
enters. These restrictions are discussed further below.

For straight steps the energy E, can be calculated
analytically, giving the well-known [1,6] logarithmic
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FIG. 1. Pattern of equally spaced sinusoidal steps used here.
Black and white regions correspond to 2x 1 and I x 2 domains,
which are separated by single-layer steps. Step spacing L
wavelength A. , and ampl&tude A are indicated. ~a~ A =,() =0 (b)
A =0.6L, (c) A =3L. L and A, are the same in all three figures.

dependence on step separation L, F., =Ci —C2ln(L/S),
here C reflects the strength of the interaction, and Ci

ofcharacterizes the local energy of the step. Our value o
C2 is 29 meV/a, considerably larger than that suggested
previously [ll, mainly because of more accurate recent
calculations of the stress anisotropy [9]. Ci here repre-
sents an average of Sg and Ss local energies; its numeri-
cal value depends upon the (arbitrary) choice of S, and
we adopt the convention S =ira chosen by Alerhand et al.
[1]. Since the actual step energy for Si is not well known,
we somewhat arbitrarily choose a local energy such that
C~ =58 meV/a. The efl'ect of this choice and of other ap-
proximations is discussed below.

The energy per area, F.,/L, has a minimum at the step
separation

0 '
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FIG. 2. Contours of constant step energy per surface area, as
a function of amplitude A and wavelength A., for L =IOOOa.

2Only contours with energy lower than —O. I I meV/a, the ener-

gy for straight steps at this separation, are shown. There are a
series of local minima along the line A. =0.3A, and a weak loca
minimum along the line A 0. The energy has a local max-
imum with respect to A along a ridge indicated by the dashed

2line. Successive contours differ in energy by 0.02 meVIa, with
some supplemental dotted contours to better show the minima.

ridge indicated by the dashed line in Fig. 2. For still
l rger 3 the energy drops, and a series of local minima

bare clearly seen, falling nearly along a line defined y
A, =0.3A.

To show the behavior along the minima more clearly,
for each value of 3 we minimize the energy with respect
to A. , and plot the resulting energy and wavelength in Fig.
3. In all cases studied, the first minimum with respect to

Lii =Sexp(1+ Ci/C2), (2)

giving La= 63a for the parameter values used here. [For
the small angles of interest here, in discussing energy per
area it is not necessary to distinguish between surface
area and the projection of that area onto the (100) plane,
or between 8 and tan8. ] As was first pointed out by Aler-
hand et al. [1], a sufficiently flat surface could lower its
energy by spontaneously forming additional steps to de-
crease the step separation to Lp. Lp thus provides a
second natural length scale in addition to the step separa-
tion L imposed by the miscut.

We now turn to the properties of sinusoidal steps like
those in Fig. 1. Figure 2 shows the step contribution to
the surface energy, on a surface with step separation
L =1000a, corresponding to a miscut of 0.02 . Contours
of constant energy are shown as a function of the ampli-
tude 8 and wavelength A. of the undulations. Only con-
tours with energy lower than that for straight steps are
shown, so straight steps are unstable over the entire re-
gion within the outermost contour.

The behavior is surprisingly complex. There is a shal-
low local minimum in energy for straight steps, i.e.,
A =0. Increasing the amplitude raises the energy up to a
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FIG. 3. Properties of steps on a surface with step separation
L 1000a. For each amplitude A, the wavelength A, is that
which minimizes the energy. (a) Energy per surface area vs re-
duced amplitude A/L Amplitude is scaled by L. to emphasize
nearly perfect periodicity. Dotted line is energy for straight
steps, for comparison. (b) Same as (a), on diFerent scale to
show oscillations. (c) Reduced wavelength A, /A vs A/L.
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A was the deepest, but there were subsequent small oscil-
lations about an asymptotic value. The period of these
oscillations is simply the step spacing L, suggesting that
the oscillations are due to a preference for having a
specific alignment of the extrema of different steps. The
ratio k/A remains virtually constant beyond the first
minimum in Fig. 3, consistent with the nearly straight
trough in the energy surface seen in Fig. 2. The approach
to an asymptotic value represents an approximate scaling
relationship: The energy depends primarily on A/)j. , with
corrections due to the discrete step structure with period
L.

Finally, to obtain an overview of the behavior of the
surface, we calculate the minimum-energy step shape for
a range of L. In Fig. 4, we see that, for step separations
of about 200a or less, the straight steps have lower ener-

gy. For separations less than 150a, we could not even
find a local minimum with respect to A, and A. However,
for step separations larger than 200a, straight steps can
lower their energy by developing undulations. At large
step separations the energy appears to be approaching
that of the minimum-energy surface, i.e., of the surface
with step separation Lp.

The amplitude A of the minimum-energy steps, shown
in Fig. 5, scales nearly perfectly with L as A =0.8L, over
the entire range L & 200a where wavy steps are favored.
The wavelength 1 actually decreases with increasing L, so
A/A, increases with L.

From Fig. 4, we see that the surface should undergo a
phase transition with respect to angle of miscut, from a
phase of straight steps to one of wavy steps. Surfaces
with intermediate miscut should (if kinetics allow) facet
into regions with L = Lo and very flat regions of large L.
Such faceting would still be compatible with step flow,
and has apparently been observed by Tromp and Reuter
[S]. Alternating up-and-down facets of miscut L =Lp
might have slightly lower energy; but like extra up-and-
down steps, such up-and-down faceting would be incom-

8 (degrees)
10 ' 10

patible with step flow.
We can get a semiquantitative understanding of the

formation of step undulations in a rather simple way. In
Fig. 1, we see that for large A substantial portions of the
surface are covered with nearly straight steps at a spacing
much smaller than L. Intuitively, we expect that the step
undulations form in order to decrease the step spacing to
a value closer to the minimum-energy spacing L p.

The length of wavy steps (composed on an atomic scale
of rectilinear segments) is increased by a factor of
I+4A/A„so we can think of the characteristic step spac-
ing as being reduced roughly by that factor to L/(1
+4A/A, ). If we assume that the energy is minimized
when this characteristic spacing approaches Lp, we would

expect that L/( I+4A/X) = Lo, i.e.,

A/)t = (L —Lp)/4Lp.

In Fig. 5(b), this linear relationship is included as a dot-
ted line. (It appears as a curve due to the logarithmic
scale. ) The actual calculated results are seen to corre-
spond rather well to the crude prediction (3), confirming
our picture of the driving mechanism here.

Finally, it is important to address the limitations of the
present study. Any inaccuracy in the stress anisotropy
and in the local step energy C[ simply changes the overall
energy scale and the length Lo. A moderate change in

the energy scale has no affect on our conclusions. While
we have only studied one value of Lo, it is clear that step
waviness should in general occur whenever L becomes
much larger than Lp. We also note that the value of Lp
here is fortuitously close to that inferred by Tromp and
Reuter.

We have treated the case of no applied external strain.
However, even a modest external strain can significantly
affect the stress-domain patterns at small miscut [1,10].
Small strains can easily occur accidentally in experi-
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FIG. 4. Step energy per surface area vs step separation L
(bottom scale), or angle of miscut (top scale). Dots correspond
to sinusoidal steps, whose amplitudes A and wavelengths A, are
those which minimize energy; solid curve is a spline fit to guide
the eye. Dotted curve is the corresponding energy for straight
steps.

L (a)

FIG. 5. Properties of minimum-energy steps vs step separa-
tion L (bottom scale), or angle of miscut (top scale). Each
point corresponds to a point in Fig. 4. (a) Amplitude as frac-
tion of L (b) Dimensionless am. plitude A/A. , along with linear

relationship of Eq. (3) (dotted line).
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ments, and so should be considered before attempting a
detailed comparison with measurements.

We have also assumed a specific shape for the steps,
based on analytic convenience. Thus our variational cal-
culation in the parameters k and A actually provides an

upper bound on the energy of the wavy phase. This is

enough to guarantee our central result, the instability of
straight steps. Moreover, the assumed sinusoidal shape is

physically reasonable, and is qualitatively consistent with

experimental observations [8]; so it seems highly unlikely
that a more accurate shape would greatly affect the
overall behavior, see Fig. 4.

It would certainly be of interest to determine the actual
step shape which minimizes the energy. In particular,
meandering of the Sq steps is favored, since it creates
segments of S~ step, which are believed to have rather
small local energy. Meandering of Sz steps creates
higher-energy S~ segments. Thus we expect S~ steps to
have undulations of larger amplitude. Aside from the
shapes of the individual steps, more complicated patterns
of steps are possible, which would not repeat every two

steps. Also, the presence of "kissing site" defects [11],
associated with antiphase boundaries in the dimerization,
appears to cause significant deviations from ideal behav-
ior [8].

The only apparent discrepancy between theory and ex-
periment [8] is the failure to observe the predicted large
values of A/X, for large L. Step flow kinetics would tend
to suppress large A/A, , especially given the rather weak
dependence of energy on A, in Fig. 2. Large A/k could
also be disfavored if the step undulations are coherent
only over small patches, as in the experiments, due to de-
fects. And at very large L, even small external strains
could affect the results.

Spontaneous step formation [1] has the advantage that
only the low-energy Sz steps are created. However, even

if this should prove to be the structure of lowest energy, it
might not be kinetically accessible. A sequence of Sz
steps necessarily has an up-and-down pattern. Step flow

would quickly eliminate such steps, leaving only the
monotonic sequence of steps associated with the miscut.
Such step flow occurs not only while growing by vapor
deposition, but also during sublimation while heat clean-
ing the surface [8]. At temperatures low enough to
suppress sublimation, the energetic barrier to spontaneous
step formation might be prohibitive.

In contrast, step waviness can reduce the elastic energy
without interfering with step flow. And the phenomena
observed experimentally [8] are all in accord with this

picture, including step flow during high-temperature
cleaning, coherent step undulations over large areas, and

apparently even faceting into regions of more closely
spaced straight steps and widely spaced wavy steps. Thus
very flat Si(001}surfaces provide a window onto an unex-

plored regime with a wealth of fascinating new phenome-
na.
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