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Kinetics of a Vacancy-Driven Order-Disorder Transition in a Tvvo-Dimensional Binary Alloy
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Domain growth in a two-dimensional quenched binary alloy which undergoes an order-disorder transi-
tion is studied. %'e have used Monte Carlo simulation of a nearest-neighbor antiferromagnetic Ising
model. The novelty is that the dynamics is introduced via a single vacancy that moves by jumping to
nearest as well as next nearest neighbors. The excess energy decay and the scaling of the structure fac-
tor have been studied. An algebraic behavior R(i) eever with x =0.77+ 0.03 is found. This dynamics
can be used to accelerate equilibrium Monte Carlo simulations.
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Domain growth kinetics has received great attention
during the last fifteen years but it is still under discussion
[I]. It has been suggested that growth kinetics can be ar-
ranged in diAerent classes according to the long-time and
long-distance evolution of the characteristic length of the
system R(t ), like the mean domain size or the correlation
length [2]. For pure systems with nonconserved order pa-
rameter an algebraic law R(r) cL t" with x = —,

' has been

proposed [3] (Allen-Cahn law), while in the case of a sys-

tem with conserved order parameter it is believed that
x = —, [4] (Lifshitz-Slyozov law). Nevertheless, experi-

ments, simulations, and theories have shown that the ex-
istence of impurities [5], quenched [6] and annealed [7]
disorder, self-pinning efects [8], or hydrodynamic cou-
plings [9] can modify these growth laws. Therefore the
existence of universality classes is, nowadays, under ques-
tion.

We will focus on domain growth in systems which un-

dergo an order-disorder phase transition [10,11]. This
corresponds to a case with nonconserved order parameter
and conserved density. The system, in a stable disordered
state at high temperature, is quenched to a temperature T
well below the order-disorder phase transition tempera-
ture To. After nucleation, small domains will grow and

coarsen, approaching the new equilibrium state. It is be-
lieved that the long-time evolution is curvature driven,
which justifies an Allen-Cahn [3] growth exponent x =

2~ .
Typical experimental examples of such systems are
binary metallic alloys like Cu-Au [12] or chemisorbed
overlayers [13]. Some measurements are in agreement
with the x =

& growth law, but diff'erent values of x have

also been measured [12,13].
%e present a Monte Carlo simulation of the growth of

ordered domains in a two-dimensional A8 binary alloy,
which has been modeled by means of an antiferromagnet-
ic Ising model with nearest-neighbor (nn) interaction on

a square lattice. The ground state of the system is two-

fo1d degenerate and shows a chessboard structure with

two equivalent sublattices.
Although quite unrealistic, kawasaki exchange dynam-

ics is, nowadays, commonly used when dealing with

conserved-density systems. It is thought that, in binary
alloys, real dynamics occurs through the movement of va-

cancies, but this case has been studied much less. The
first Monte Carlo simulations, in very small systems, by
Flinn and McManus [14] used vacancy dynamics to
study bcc binary alloys. They pointed out the importance
of allowing the vacancy to perform jumps up to the next
nearest neighbor (nnn), to reach equilibrium at low tem-
peratures. Later, Beeler [15] showed that for low vacan-

cy concentrations, the vacancy random walk contracts in

the ordered regions compared with the fully disordered
ones. He also showed that details like the number of
neighbors per site of the lattice, or the jumps allowed to
the vacancy, can inAuence the vacancy motion. More re-

cently, Fultz [16] indicated that vacancy trapping in-

creases when order develops and that low lattice coordi-
nation numbers favor vacancy trapping at the interfaces.
Finally, Mouritsen and Shah [7] have studied ordering
processes with a mixed spin-Aip and vacancy dynamics
and have shown that the x= 2 growth law has a cross-
over to a slower logarithmic behavior due to the eAect of
the annealed vacancies.

In our model, the Hamiltonian can be written as

I I
J Z Zsi, q(~i;i+1+si+i, q, ) ~

I j ]

~here J is a positive parameter and sg~ are scalar vari-
ables defined on the sites (k,j) (k,j=i, . . . , L) of a

two-dimensional square lattice that take values 1 and —
1

representing 8 and 8 atoms, respectively. The number of
rI (Ng) and 8 (Nn) atoms is kept constant and nearly

equal to N/2. We consider the existence of a single va-

cancy substituting an A or 8 atom, so that

JV g —kg =—g Zs, , =+ —=O. (2)
1V JV 1[,-[ j-l ' N

If no vacancies are considered, the Hamiltonian in (I)
reproduces quite well the equilibrium properties of an or-
dering binary alloy. It can be directly mapped to a pair-
interaction model [17], resulting in J=2V~n —V,~,~—Vqq, where V~,i, V~q, and Vga are the pair-interaction
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energies. In the pure stoichiometric case, J is the only

relevant model parameter, but when vacancies are present
the parameter U = V~~ —Vs& determines the tendency of
the vacancies to locate in a site surrounded by 2 or 8
atoms [16]. Strictly speaking, ignoring this fact, as we

do, is equivalent to assuming that U=0. However, as we

are working with very low vacancy concentrations, the
equilibrium properties are practically unchanged.

All the dynamics is introduced by the movement of the
single vacancy. Jumps to one of the four nn or the four
nnn positions are proposed with equal probability. Then,
following a usual Metropolis algorithm, jumps are ac-
cepted with a probability P =min(e, l), where AH is

the associated energy change. We have not considered
the existence of additional energy barriers, which in real
systems could modify the growth law.

The ordering process occurs as follows: The vacancy
performs a random walk ordering the system and minim-

izing the energy. When the lattice is very disordered,

jumps are, on the average, equally accepted to nn and
nnn positions. When ordered regions appear the vacancy
does not trap there, since it can freely jump to nnn with

hH =0. It should be noted that the problem of the ran-
dom walk of a vacancy on a lattice has been theoretically
studied in the case of fixed configurational order [18] but,
to our knowledge, not when order develops due to the va-

cancy movement.
We have performed Monte Carlo (MC) simulations

on lattices with different sizes L and periodic boundary

conditions. The time has been measured in MC steps
defined as L vacancy jump attempts. The system is

quenched from a completely disordered state (T=~) to
T=O.SJ/kg, that is, 20% of To. For each lattice size
L =30, 50, 100, 200, and 500 we have averaged over 50,
30, 20, 15, and 8 different runs, respectively. We have
excluded the cases that lead to final "slab" configura-
tions, corresponding to two competing domains separated
by Aat interfaces. It is worth noting that slab tendency
increases with L.

For the case L =100 we have also simulated several
evolutions with the usual exchange mechanism (including
exchanges to nn and nnn) which allows a comparison be-
tween both dynamics. Figure 1 shows the acceptance ra-
tios of jumps to nn and nnn in the cases of exchange and
vacancy dynamics. In both cases jumps to nnn positions
are favored as the time increases, but the behavior is

completely different. The rate in the case of vacancy dy-
namics evolves more randomly but, on average, nearly
linear with time, until reaching a state with almost corn-

plete order. In contrast, the exchange dynamics case
shows a slower decay. In the inset we plot the change of
the total energy of the system with time. As can be seen,
the evolution with the vacancy mechanism is faster than
the one using the exchange mechanism. We have tested
that the exchange dynamics behavior agrees with a stan-
dard Allen-Cahn law with x =0.50~0.03.

Figure 2 shows a log-log plot of the energy excess for
all lattice sizes in the case of the vacancy mechanism.
Three different regions can be clearly identified. (i) A re-
gion with no algebraic behavior where formation of small
domains starts. (ii) A broad region where the results are
compatible with an algebraic law with x=0.77+0.03.
(iii) Finally, when the correlation length of the system

O

0.60

O
~ ~

n. 0.&0

-5000—

~ -10000
UJ

—15ppp - Exchange

Vacancy

-20000

~ z
Llj

0.20
Vacancy n.n.

I

500 1000

mes
1500

00

0
0

E xchange n. n.
II i

500 1000
ITlC S

I

& 500
I

2000

FIG. 1. Comparison of the acceptance ratios of nn and nnn

proposed jumps for a standard exchange mechanism and a
single-vacancy-motion mechanism. Inset: The evolution of the
excess energy. Data correspond to simulations with L =100.
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FIG. 2. Log-log plot of the excess energy per particle vs time
for all the diAerent studied lattice sizes. The dashed and dotted
lines correspond to the potential behaviors with x=0.77 and
x =0.5, respectively. The diff'erent sizes are shifted one vertical
unit in order to clarify the picture.
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begins to be similar to L, finite-size effects appear and the
excess energy falls down to a state with a single domain.
In the algebraic growth region standard deviations are 3
times the linewidth. The final equilibrium energy has
been obtained by averaging a number of very long runs
(4000-6000 MC steps). A slight decrease of x with in-

creasing lattice size cannot be excluded, although this
change is smaller than the numerical uncertainties.

In the case L =500, for which finite-size effects appear
at longer times, we have measured the structure factor,
defined as

L L

S(q, r) =, g +st)( —I)"+'e
N k I j 1

(3)

where rkj are the positions of all the lattice sites and q is
a vector of the reciprocal lattice. Because of the finite
size L, q can only take the values q =(n, m)2'/L, where n

and m are integers [19). After the quench, a peak devel-

ops around q=0. We have studied two sections of the
peak along the directions parallel to the reciprocal vectors
(1,0) (m 0) and (1,1) (m=n) We.have averaged over
the symmetrical directions (0,1) and (1,—I ), respectively,
and over eight dilferent runs. The amplitude of the peak
o(t), which corresponds to the inverse of the mean size of
the domains, has been measured in both directions as

,( )
Qq'S(q, t) (4)
QS(q, t)

The sums in (4) are over all the possible points along the
corresponding direction, and are cut when the values of
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S(q, r ) are less than the background values obtained for a
completely disordered configuration. Figure 3 sho~s the
evolution of o (t ) in both directions (1,0) and (1,1).
Again, we find a behavior compatible with an x =0.7'7

algebraic growth law.
More important than a potential growth law is the ex-

istence of scaling. We have tested this fact comparing
the structure factor at different times. Figure 4 shows the
scaling function o(t) S(q/cr(r), t) in a semilogarithmic
plot. The inset shows the details of the peak in a linear
plot. The overlapping of the different curves is excellent,
although some statistical fluctuations can be seen very
close to q =0.

We have also tested the scaling with the size of the sys-
tem by comparing the times tI at which finite-size effects
appear on the excess energy plots (Fig. 2). Finite-size
eA'ects occur when the correlation length g(tL) =EL,
where A, is a factor that only depends on geometry. Since
scaling is present in the system, all the lengths grow with
the same law. In particular g(t) ~I "The.n., tl must de-
pend on L as tr ~L' '. The inset of Fig. 3 shows the
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FIG. 3. Log-log plot of the structure factor width along the
directions (1,0) (Q) and (1,1) (a) of the reciprocal lattice. The
thin lines have a slope x =0.77. Inset: The dependence of the
times tI in which finite-size effects appear with the lattice size
L. The line is the best fit and has a slope of x =0.76. Data cor-
respond to simulations with L =500. In both plots, dotted lines
have a slope x 0.50.
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FIG. 4. Semilogarithmic plot of the scaled structure factor

for times t =2000 (0), 1000 (h.), 500 (a), 200 (o), IQO (a),
and 50 (0) MC steps. The values corresponding to the direc-
tion (I,O) have been shifted in order to clarify the picture. In-

set: The details of the peak in a linear plot. Data correspond to
simulations with L =500.
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values of tI versus the values of L in a log-log plot. The
best-fit line gives I/x =0.76 in agreement with the
values found from the energy and domain-size growth be-
haviors.

All the above results are consistent with a domain
growth law for a nonconserved order-parameter system
driven by a vacancy mechanism, with a dynamical ex-
ponent close to x =0.77, different from the classical
Allen-Cahn expected exponent x 0.5.

Therefore, it is clearly established that the curvature-
driven mechanism which leads to the Allen-Cahn law is
modified by vacancy diffusion. The logarithmic growth
law that has been proposed by other authors [7] can be
justified by the fact that in the ordered state the vacancy
can only move by jumps between equivalent sublattices.
Then the energy cost for each movement is high because
movements produce disorder on the system (it is known

that the optimum mechanism to move the vacancy to a
nnn position involves six nn jumps [20]). Contrarily, in

our case, two factors accelerate ordering phenomena: (i)
First, vacancy trapping in the ordered regions does not
occur because we allow far enough jumps (up to nnn) to
assure movement inside each sublattice with no increment
of energy. (ii) Second, while the standard exchange
mechanism (sequential or random) produces a uniform
sweep of the lattice, when the vacancy enters a disordered
zone or an interface, it remains there for a longer time
accelerating the ordering process. This is the most
relevant factor that makes our mechanism different from
the standard exchange of particles.

This explanation is in qualitative agreement with the
theory proposed by Furukawa [21] for the case of a sys-
tem with nonconserved order parameter and conserved
number of vacancies. According to him, the growth is
then driven by the bulk mobility which gives rise to a very
fast growth law with x =1. Our smaller value (x-0.77)
may be justified if one considers that the probability for
the vacancy to find disordered regions decreases as order
develops in the system. This explanation is consistent
with the tendency, mentioned before, of x to increase as
the vacancy concentration increases (decreasing L).

Consequently, it can be suggested that the exponent
x = 2, which is thought to be universal in pure systems
with nonconserved order parameters, can be increased or
decreased when a constant concentration of vacancies is
present, giving rise to a transient behavior that depends
on the details of the vacancy motion. This point should
be considered when analyzing experimental results on
domain growth in systems with vacancy-driven dynamics.
%e suggest that careful measurements in real metallic al-
loys and comparison with MC simulations would be of
great interest, and can clarify details of the vacancy
motion during order-disorder phase transitions.

Our results are also interesting for accelerating Monte
Carlo simulations to study equilibrium properties of sys-
tems with conserved density. Although it is not vectoriz-

able, for those problems where a scalar algorithm must be
used, the vacancy-driven mechanism has been proved to
be physically faster than the usual exchange dynamics.
This single-vacancy mechanism has similarities with the
algorithm proposed by Creutz [22]. In our case the va-

cancy acts as a "Creutz demon" minimizing the energy
and conserving particle density.
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