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Parity Violation in the Compound Nucleus: The Role of Distant States
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We explain why the measured parity-violating asymmetries for pl&2 compound-nuclear resonances
tend to have a common sign. We show that the asymmetry is a sum of two terms: an average term dom-
inated by admixtures of distant levels and a term that fluctuates from resonance to resonance dominated
by admixtures of nearby compound-nuclear states. The average asymmetry involves single-particle tran-
sition amplitudes of the parity-violating interaction, while the fluctuating asymmetry retains a statistical
character. Our theoretical estimate of the average asymmetry agrees with a value extracted from exper-
imental data.
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A recent communication from the TRIPLE Collabora-
tion [1] on the measurement of parity-violating asym-
metries in the scattering of low-energy (1-400 eV) polar-
ized neutrons from Th pointed out that measured
asymmetries were overwhelmingly of the same sign. All
seven of' the asymmetries in '- Th are positive, as are
thirteen of fifteen of all known asymmetries. The proba-
bilities of these outcomes occurring by chance, if the
asymmetries had random signs, are 1.6% and 0.6%, re-
spectively. Thus, it would appear that there is clear evi-
dence for a nonstatistical behavior for this parity-vio-
lating process involving compound-nuclear levels, which
otherwise exhibit statistical behavior. In this Letter we
shall explain why asymmetries tend to have a common
sign. %'e show that configurations several MeV distant in

energy are important [2].
The scattering cross sections of low-energy neutrons

from nuclei exhibit strong closely spaced compound-
nuclear resonances. Parity violation is observed at pig2
resonances due to admixtures of opposite parity s1~2 states
produced by the parity-violating part of the weak interac-
tion. (p and s designate the orbital angular momentum
carried by the neutron and —,

'
is the total angular momen-

tum. ) Parity-violating elects are observable at low-

energy p~~2 resonances because the neutron decay ampli-
tudes of the admixed s]p states are larger than the decay
amplitudes of pip resonances. The longitudinal asym-
metry for the mth resonance, P„„ is defined as the frac-
tional diAerence of the resonance cross sections for neu-
trons polarized parallel and antiparallel to their momen-
ta, og(+) and aR( —):

og(+ ) —czR( —)
P„,= a~(+ )+ crR( —)

'

%'e develop an expression for the parity-violating asym-
metry of p ig2 resonances as the sum of two terms: a fluc-
tuating asymmetry and an average asymmetry. The fluc-
tuating asymmetry has zero mean and is dominated by
admixtures of those sip states whose energies are closest
to the pig resonance under study. The fluctuating asym-
metry has been discussed recently by Johnson, Bowman,
and Yoo [3]. The average asymmetry will be shown to

arise from correlations between matrix elements of the
parity-violating interaction, Vpy, and decay amplitudes.
These correlations involve single-particle configurations
that are several MeV away.

The parity-violating asymmetry has been expressed as
a perturbation expansion [4]:

(n i Vpv im) y„
P„,= —2 2

n Fpg Fnt

The state ~m) and the states ~n) are a p~g2 resonance and
the sleep states admixed into it, F.„, and E„are their
respective energies, and y„, and y„are their neutron de-
cay amplitudes [5]. The statistical point of view treats
the expansion coeScients of compound-nuclear states as
independent Gaussian random variables each having zero
mean. Parity mixing in the compound nucleus was thus
viewed as a totally statistical process; the decay ampli-
tudes and mixing matrix elements were taken to be ran-
dom variables. Since compound-nuclear resonances are
linear combinations of many components, the correlations
between y„, y„„and (n~Vpv~m) are small and were
neglected [6,7].

The existence of a tendency for asymmetries to have a
common sign per se leads to the conclusion that states
with large energy denominators play an important role.
Even if the small correlations between y„, y„„and
(n~ Vpv~m) are taken into account, the energy denomina-
tor in Eq. (2) weighs contributions from s~~2 resonances
above and below F.„, with opposite sign, leading to no sign
preference for asymmetries. Therefore, terms with the
smallest energy denominators cannot produce an average
asymmetry and contributions from distant states must be
important.

To show how the average asymmetry arises, we express
the decay amplitudes for s]y2 and ply2 resonances as the
decay amplitudes for single-particle configurations times
the amplitudes for finding these configurations in the
compound-nuclear resonances [8]:

y„=y'&n(G+s), )„,=y~(m~G+p),

)" i JX
IR
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Here lc is the neutron wave number (k-Jg) and & is

the nuclear radius. The single-particle configurations
(G+s& or (G+p& are formed by the addition of one s or

p neutron to the target ground state, and y' and yP are
the decay amplitudes for these single-particle configura-
tions (ly'/y"(=1. 2X IO+ for a I-eV neutron on 3 Th)
[9]. The observed neutron decay amplitudes of com-
pound-nuclear resonances are always much smaller than
the decay amplitudes of a single-particle configuration
because the wave functions for compound-nuclear reso-
nances are linear combinations of a large number N of
multiparticle-multihole configurations. The single-parti-
cle configurations (G+p& or (G+s& appear as a small

—2y' (G+ s(n&(n ( j&&j ( Vpv(l&(l (rn

((m ( G +p) (
y" Jin En —Em

The terms with (j) (G+s) and (l) =(G+p) will all

have the same sign, while all other terms fluctuate in sign

when considered as functions of j, I, m, or n. First, re-
taining only the terms having the same sign in Eq. (5)
yields an expression for the average asymmetry P:

I&G+s ln&l'&G+&(Vi v(G+p&

y" n En Em

The expression ((G+s(n)( is the probability of finding
the state (n) in the configuration (G+s).

In order to understand the behavior of the parity-
violating asymmetry it is useful to consider some aspects
of the relationship between the independent-particle and
compound pictures of the nucleus [9]. The sum of proba-
bilities ((6+sin) (or ((G+p(n)( ) per energy interval
is called the s-wave (or p-wave) strength function. In the
independent-particle model of the nucleus s and p single-
particle configurations alternate and are separated in en-

ergy by one major shell spacing, -6.1 MeV in 232Th.

The part of the strength function arising from the single-
particle configuration (G+s) (or (G+p)) may be
thought of as a Lorentzian distribution of width I, the
spreading width, centered at E, (or E~), the excitation
energy of the configuration. The sum of the probabilities
((G+s (n)l 2 over the states is unity if E, is well above the
Fermi surface. Strong p-wave resonances occur whenever

E„ is near neutron threshold energy, E, (A =20-40,
80-140, and 220-240). The occurrences of strong s-
wave resonances (A =40-80 and 140-200) interleave the
occurrences of strong p-wave resonances.

The resonances for which non zero parity-violating
asymmet-ies have been measured occur in nuclei showing
strong p-wave resonances; E —EI —E„. For such nuclei
P can be approximated as

(G+s(Vpv(G+p&P= —2 7
yP Es —E

Here s enumerates the configurations (G+s) that have
large matrix elements and (E, E, (

—(one shell spacing). —

component of a large number of stationary states spread
over a range of energy I, the spreading width. N can be
estimated from the relation [9]

N =nl /2D, (4)

~here D is the level spacing of compound-nuclear reso-

nances. Taking D =17 eV for p]y2 neutron resonances in
' Th and I =1.5 MeV we obtain N=1.4X IO . The

correlations between y„, y, and (n(Vpv(m) are of order

I/JN and were therefore neglected.
In order to exhibit the correlations implicit in Eq. (2)

we first insert and sum over complete sets of states [(j)}
and [(l)},of which (G+s) and (G+p) are members:

)&m (G+p) (5)

Equation (7) can be used to estimate the size of the aver-

age asymmetry since P no longer depends on properties of
individual compound-nuclear states. We note that Eq.
(7) involves matrix elements of Vpv between single-

particle configurations, reminiscent of a direct reaction.
The most complete experimental data for parity-

violating asymmetries are available for the nucleus Th.
We estimate P for Th by evaluating the energy denom-
inators and matrix elements in Eq. (7). The neutron

threshold energy E, =4.8 MeV in Th. There are two

single-particle configurations that admix with the 4piyi
configuration: the 4sii2 and the 5si~q configurations.
From deformed shell-model calculations [10] we estimate
the excitation energy of the 4s~j2 configuration in Th
to be 3.1 MeV. This gives E, —E, = —1.7 MeV. This
energy difference is smaller than one major shell spacing
due to the effects of deformation. For the 5siyi con-
figuration we take E, —E, to be one major shell spacing,
6. 1 MeV.

In order to estimate the matrix elements we make use
of the single-particle character of the matrix element in

Eq. (7) and replace Vpv with an effective one-body
operator [11]. The lowest-order T-invariant parity-odd
rank-zero operator for a single nucleon is cx p, where n
are the Pauli operators and p is the nucleon momentum.
We take Vpv acr pc, where c is the speed of light and s
is a dimensionless constant. For simplicity, we take
harmonic-oscillator wave functions for the single-particle
configurations. The matrix elements of cr pe are [9].

(G+5sigi(cr pc(G+4pigq) = —i 1 52 MeV,

(G+4s ig2(cr. pe(G 4+p i)f2=+i 161 MeV .

Both of the matrix elements are of the same order as the
Fermi momentum (PF) times c, 250 MeV. The two

configurations contribute with the same sign yielding
P =82.9x10+ .

We estimate the strength of the weak interaction as
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given by the constant c in two ways. The nuclear single-
particle potential, which accounts for many gross nuclear
properties, is also the one-body reduction of a sum of
two-body operators. The value of the strong one-body
potential at nuclear density is about 50 MeV. We esti-
mate the ratio of the weak matrix elements to strong ma-
trix elements as GFPF/G, —10, where GF is the weak
coupling constant and 6,—1 is the strong coupling con-
stant. This yields (s(Vpv(p) —50 eV, e—4x10, and
P-10% at 1 eV neutron energy. A more formal esti-
mate may be obtained by starting with the meson-
exchange two-body weak potential of Desplanques,
Donoghue, and Holstein (DDH) [12]. This potential in-
volves weak meson-nucleon coupling constants, which are
estimated using current algebra techniques, relations be-
tween strangeness-changing hyperon decays and strange-
ness-conserving processes, and weak SU(6) symmetry.
Adelberger and Haxton (AH) [13] give the one-body
reduction of the meson-exchange potential for a Fermi
gas. We estimate the range of the constant ~ to be—0.9 (10+ e& 1.2 from the ranges of meson couplings
given by DDH applied in the AH expression. This yields—15 &i(G+4sit2(etr pc(G+4pit2) & 21 eV and —2.5%
&P &+3.5%. Short-range repulsion in the nucleon-

nucleon interaction would decrease the above estimate,
but other effects particular to the medium may increase
the estimate.

Continuing the development that led to Eq. (6) results
in an expression suitable for the analysis of experimental
data. To obtain such an expression, recall that the corre-
lations between y„, y, and (n(Vpv(m) originate from
only one term in the expansion of the matrix elements
(n( Vpv(m) in Eq. (5). Removing these terms changes the
value of each matrix element by a negligible amount.
The fractional change is —1/JN. The asymmetry can
therefore be written as the sum of a Auctuating term hav-
ing zero mean and an average term:

(n (Vpv(m) y„ 1 epPm= —2 +B
n Fn Em )m E

' (/2

(9)

The quantities y~, y„, and (n ( Vpv(m) can be treated as
uncorrelated random variables. Experimental data for a
given nucleus can be described by two quantities: an
average asymmetry parameter B and a mean-squared
matrix element M =((m(Vpv(n)( as defined by Bow-
man et al [6]. .

In order to test the above ideas quantitatively we deter-
mine a value of B from the Th experimental data of
Frankle et al. [1] and compare it with the theoretical esti-
mates of P. The analysis of data on parity-violating
asymmetries for p-wave resonances by the likelihood
method must be modified to include B. In addition, q, the
probability that a p wave resonance included in the
analysis has angular momentum 2, must be evaluated.
Although Bowman et al. [6] showed M to be insensitive
to the value assumed for q and took q = 3, 8 does depend
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on q. The density of p[/~ resonances is the same as the
known density of s[i2 resonances, 1'& eV ' in -"Th. The
p]i2 resonances are twice as strong as the p~/2 resonances
[14]. While 67 pi/2 and p3t2 resonances are expected in

the neutron energy interval 0 to 400 eV, only 23 were
strong enough for Frankle et aI. to analyze. We assume
the pi/~ and p3/2 neutron widths to have Thomas-Porter
distributions and obtain q =0.44. A likelihood analysis
then yields 8=8.0 +—q0% and M= 1.2+04 meV. (Frankle
et al. obtained M =1.4 —+04 meV with B=O.) The experi-
mental value of 8 corresponds to

i(G+4$1» l~rJ pc(G +4p in& =48 —~6~ e'it

and is in agreement with the above estimates of P: a few
percent at 1 eV.

Our model predicts that the sign of P will be the same
for all nuclei that show strong p-wave resonances near
neutron threshold, E~-E, . In the one-body approxima-
tion Vpv- e.pe. For harmonic-oscillator wave functions,
the matrix element of o" pe for the s configuration above
the p configuration in energy has a phase —i and that
below has a phase +i [9]. According to Eq. (7) the sign
of P is the same for all such nuclei.

In conclusion, we have shown why parity-violating
asymmetries predominantly have a common sign. The
direct mixing of distant s [/2 single-particle configurations
into pitq compound-nuclear resonances produces an aver-

age parity-violating asymmetry of approximately the
same size as the Auctuating asymmetry produced by the
mixing of nearby compound-nuclear states. All nuclei

showing strong p~/2 resonances near neutron threshold
are predicted to have the same sign for P. The size of the
underlying single-particle parity-violating mixing matrix
elements needed to explain the size of the average asym-
metry in Th is tens of eV. Matrix elements of this
magnitude seem to emerge in a natural way from dimen-
sional arguments as well as meson-exchange models of
the weak nucleon-nucleon force. The observed parity-
violating asymmetries in compound nuclei, where the lev-

el spacing is tens of eV, are seen not to be dominated by
the mixing of nearest levels. This conclusion suggests a
reexamination of the approximation that the nearest lev-

els play a dominant role in the parity-violating phenome-
na in light nuclei.

We have given an expression suitable for the analysis
of experimental data. There are two quantities that can
be determined for each nucleus: the average asymmetry
parameter 8 and the root-mean-squared matrix element
of the weak parity-violating interaction, M. More precise
and more extensive data are needed to determine better
these parameters and their variation with atomic mass.
As we better understand parity-violating effects in com-

plex nuclei, we may improve our quantitative understand-

ing of the weak nucleon-nucleon force in the nuclear
medium. The experimental determination and interpreta-
tion of a handful of data have already increased our un-

derstanding of parity-violating mechanisms in nuclei.
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