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Nuclear-Matter Properties Based on a Relativistic Model of the Nucleon-Nucleon Interaction
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Saturation properties of nuclear matter are determined within a Dirac-Brueckner approach. Relativ-
istic covariance is implemented by constructing the complete representation of the nucleon-nucleon am-
plitude in the Dirac space. As a dynamical model the relativistic one-boson-exchange model is used, in-
cluding also the negative-energy-state components. A consistent treatment is discussed of nucleon prop-
agation in the nuclear medium. The compressibility obtained for symmetric matter is rather low as com-
pared to other calculations and more in agreement with the value suggested by astrophysical studies.
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Considerable attention has been paid in the past to the
saturation properties of nuclear matter, which are essen-
tial ingredients in star evolution models [ll and heavy-ion
scattering studies [2]. The failure to be able to describe
these properties using nonrelativistic two-body nucleon-
nucleon forces has motivated investigations of both
many-body methods in microscopic calculations and the
nature of the nuclear interaction. In particular, en-
couraging results have been presented within a relativistic
framework using a meson-theory-based nucleon-nucleon
(NN) interaction. Relativistic nuclear-matter calcula-
tions require the knowledge of the two-nucleon amplitude
in the nuclear-matter frame. As this does not coincide
with the two-nucleon center-of-momentum frame one, ei-
ther a Bethe-Salpeter-type equation is approximated by
averaging out the total momentum dependency [3] or the
boosting of the two-nucleon amplitude is done by express-
ing it in a covariant form. In general, to determine the
covariant form of the NN amplitude in a nonambiguous
way, information is needed for both positive- and neg-
ative-energy Dirac components. To avoid such a com-
plete but complex analysis, a five-covariant ansatz [4,5) is

usually made for the Dirac structure of the two-nucleon
interaction, so that the representation can be reconstruct-
ed from the scattering matrix in the positive-energy sec-
tor only.

In this Letter we present results based on a relativistic
one-boson-exchange (OBE) model, which does not have
the above ambiguity, leading to a complete representation
of the two-nucleon amplitude in the Dirac space. The re-
sulting IA2 representation (IA refers to the impulse ap-
proximation) has been shown to give a reasonable
description of the elastic proton-nucleus scattering ob-
servables at medium energies [6]. To study nucleon prop-
agation in the nuclear medium we make use of the
Bethe-Brueckner-Goldstone equations [7], which can
readily be generalized to the relativistic field-theoretical
case using covariant Green's functions. Let us consider
the ground state of nuclear matter, which can be
parametrized by the space-time homogeneous value of the
baryonic current B"=pou", where po is the density in the
nuclear-matter frame and u" the unit vector given by
tt" =(1,0) in this frame. The filled-Fermi-sphere free
propagator that corresponds to the state of definite densi-

ty which minimizes the energy is given by

S (p) =SF'(p)+2tri(p+m)h'"'" "(p' —m')0(pj+p' ),
where SF is the bare vacuum Feynman propagator and the transverse momentum p~& is given by p~& =p" —(p u)u".
This reduces to p~~ =(O, p) in the nuclear-matter frame. The second term on the right-hand side amounts to a twist of
the boundary conditions for the Dirac positive-energy states inside the Fermi sphere. As a result of invariance under the
Lorentz group and time and space reflections, the nucleon self-energy in the medium has the form Z=Z, ' —Z"y u
—Z'y p. Rewriting it as

X=X' —X, y". u —X'y. p~,

with Z =X,"+Z'p u, we get for the full nucleon propagator in nuclear matter

S(p) =
2

"
~ +2triP(„M'+(I+X')p'J+tn]b (p„+(I+X') pJ —In )0(pf+pJ ),p„ tt'+ (I +2')p'~+m

( — + —2 1 2 2 —2 2 2

p„+(I+X') p+ —m +ie
(2)

where p" =p"+Z u", m =m+2', and p„=p u. In determining the contribution of the valence nucleons, using Eq. (2)
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the factor 1+2' can be factored out according to

[p„sr+(I+X')p'&+m]8 + (p„+(I+X') p& —m ) = 6'(P„—(I+X')E*),(+) —2
E*sr'+p'~+m*

(3)

where the effective mass m* =(m+2')/(I+X') and the energy E*=(m* —p&) '/ are introduced. From Eq. (3) we

see that the mass-shell condition is given by p. u =(I+X')E —Z . The factorization is useful in the calculation of
both the nucleon self-energy from the antisymmetrized NN effective t matrix I and the binding energy. Neglecting the
vacuum fluctuation contribution we have for the self-energy contribution

Z(p~) =
3

Trq[ —I (p~,p2,p~,p2)(ti'E2 +p'~2+m*)]e(pj+pj q) .
(2x) '2E f

(4)

where A, is the isospin degeneracy, which is 2 for sym-
metric nuclear matter and 1 for neutron matter. From
this the binding energy and compressibility can be deter-
mined.

The I/(I+K') factor appearing in the intermediate-
state propagator, in the case of the full calculation where
Z

'
is positive, suppresses the contributions which are

higher order in the NN interaction [10]. Two versions of
the OBE model have been studied, both giving a reason-
able description of the free nucleon-nucleon phase shifts

up to 300-MeV laboratory energy. In Table I are given
the various coupling constants used in the two models.
The results of our self-consistent calculations in the case
of model B for the binding energy, effective mass, and
self-energy contribution as a function of the Fermi
momentum are displayed in Fig. 1. The system clearly
exhibits saturation at a Fermi momentum of 1.29 fm

Moreover, we see a very similar behavior as compared to
previous relativistic calculations, except that the self-

energy invariant Z' is substantially larger in our case.
This requires a proper treatment of this term, which is
usually neglected. It has recently been suggested that be-

dE +p'i+m*
dp8(pf —p)Tr (m+y p)4 2E*

(6)

The NN effective t matrix in nuclear matter is determined from the quasipotential approximation of the Pauli-blocked
Bethe-Salpeter equation. For the NN interaction the fully relativistic OBE model from Ref. [8] has been taken, charac-
terized by the exchange of x, e, co, p, 8, and g mesons. The intermediate-state two-nucleon Green's function can readily
be constructed from Eq. (2). For simplicity we assume that we may approximate the nucleon propagator by the quasi-
particle pole contribution. Moreover, the invariants Z' are also assumed not to be strongly dependent on the momentum
and in the actual calculations their values are taken at the Fermi surface. It should be noted that these approximations
to Eq. (2) are consistent with the sum rule as derived from the canonical anticommutation relations for the Heisenberg
fields [9,10]. Using the Blankenbecler-Sugar prescription we get in the NN c.m. frame

izb(p' ) [Efr' —p' Z+rrr*]""[Efy'+p' Z+rrt*]"'—
5

1+X (Ep +Ef) (Ep* —Ef ie)—
where Ef-[(p~+Pq) ]' /(I+X') is the total invariant

t
energy of the final state. Furthermore, p' is the relative
four momentum, E„=(p' +m* ) '/, and Q is the angle
avera'ged Pauli-blocking operator, while we have neglect-
ed the terms involving Z'u. The quasipotential equation
is solved using the helicity basis with positive- and neg-
ative-energy spinors corresponding to mass m*. From
these helicity amplitudes the covariant form of the NN t
matrix in terms of the 44 invariants [6] can be construct-
ed, which is then used to calculate the self-energy contri-
bution employing Eq. (4). In this way a self-consistent
solution is constructed at a given Fermi momentum.

The energy-momentum tensor resulting from the free
Lagrangian is bilinear in the fields. Making use of the
equations of motion and the dressed mass-shell condition
for the valence part of fermion propagators, the expecta-
tion value of the energy reduces to performing traces in-

volving only the baryon propagators. For the energy den-

sity in the nuclear-matter frame we get

TABLE I. Meson coupling constants and masses (in MeV) of models A and B. A cutoff form factor A2/(A~ —q2) is used at all

vertices.

g /4x (model A)
g'/4x (model B)
p (MeV)

14.2
14.16

139

3.09
2.0

548

0.75
1.6

960

7.6
8.27

570

1 1.0
1 1.7

783

Vector

P

0.43
0.43

763

Tensor

6.8
5. 1

763

CutoA
A (MeV)

1150
1140

773
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FIG. 1. The nucleon binding energy (in MeV), re1ative
effective mass, and self-energy parts (in GeV) for symmetric
nuclear matter as a function of the Fermi momentum for model
B (solid curve). For comparison the results of ter Haar and
Malfliet [5] (THM), Machleidt [31 (M), and Friedman and
Pandharipande [11] (FP) are also plotted.

sides the nucleon also the meson masses are modified in

the presence of a nuclear medium [12]. We have studied
its effect by introducing a density dependence in the
meson masses through p/@0=m*/m with po the meson
mass in free space. In so doing, it is found that the
Dirac-Brueckner equations do not support a self-con-
sistent solution any more. Clearly an additional in-

gredient is needed to be able to explain saturation of nu-

clear matter if such a density-dependent effect in the
meson propagators is included [13].

In Fig. 2 are shown the calculated binding energies as a
function of density at the saturation point. From this we

see that the results may lie on a "relativistic Coester

FIG. 2. The binding energies (in MeV) at the saturation
point for the complete calculation using interactions A and B,
together with the Coester line obtained in nonrelativistie two-
nucleon-interaction-only models. The results of ter Haar and
Maltliet [5] with and without considering the propagation of the
h, resonance, labeled respectively THMD and THM, and the re-
sults of Machleidt [3] (M) are also displayed.

line, " which is compatible with the experimental satura-
tion point. The calculated compression modulus is, in

general, low. For model B it is given by 170 MeV. A
linear extrapolation of the compression modulus to the
experimental saturation point gives a value on the order
of 200 MeV. This value is substantially lo~er than found

by ter Haar and Malfliet, leading to a softer equation of
state, which is favored by astrophysical calculations of su-

pernova explosions [14], but smaller than suggested by
the giant monopole resonance data [15] (see, however,
Ref. [16]).

In Fig. 3 are shown the results obtained for neutron
matter. The predictions for the binding energy and equa-
tion of state are close to those obtained by Friedman and
Pandharipande [11] in a nonrelativistic calculation, using
an effective three-body force. Using the pseudovector
representation from Ref. [19] does not lead to a self-
consistent solution of the Dirac-Brueckner equations.
The sensitivity found may be due to the fact that in the
neutron-matter case there is no isospin averaging and as a
result it is more sensitive to how well the pion is treated
in the approximate representation. In Fig. 3 the results
of the full calculation are also compared with the ones of
Ma[[[iet [17] based on a five-term representation. From
this we may conclude that it is essential to have addition-
al information on the NA interaction in the negative-
energy sector in order to be able to obtain reliable predic-
tions for the neutron-matter case. The considered relativ-
istic GBE model may be a possibility for this. The rela-
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ln conclusion, we have studied the saturation properties
of nuclear matter by solving self-consistently the Dirac-
Brueckner equations in the full Dirac space. The ambi-

guity in the relativistic structure of the NN amplitude as
derived from the NN interaction between physical states
only is resolved using a relativistic OBE model. Since the
tensor part Z' of the self-energy is not negligible, a con-
sistent treatment of the nucleon propagator in the medi-
um is needed. In so doing, reasonable binding energies
and equations of state are found.
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tively stiff equation of state obtained suggests a strong
dependence of the compressibility on the asymmetry of
nuclear matter. This would allow for a simultaneous ex-
planation of neutron-star mass data and supernovae cal-
culations [14].

FIG. 3. The binding energy (upper panel, in MeV) in neu-

tron matter using model B. For comparison the results of
Malfliet [17] (M) and Friedman and Pandharipande [11] (FP)
are shown. In the lower panel, the neutron-matter equation of
state obtained in the full calculation is compared with the
mean-field prediction [I8] (MFT) and with the results obtained

by Friedman and Pandharipande [11] (FP). The causal limit

p =8, when the speed of sound in the medium approaches the
speed of light, is also displayed.
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