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Finite-Size EH'ect in Lattice QCD Hadron Spectroscopy
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A hadron spectrum calculation with two light dynamical quark Aavors was carried out with the
Kogut-Susskind quark action at P =5.7 on lattices of spatial size 8', l2', and 20' for mv =0.0l and 0.02
in lattice units, with emphasis given to a systematic study of the finite-lattice-size effect. It is found that
hadron masses on a l6 spatial lattice at this P still suffer from a significant finite-lattice effect at least
for m~ 0.01, showing the importance of a quantitative control over the finite-size effect in comparing
simulation results with the experimental hadron masses even for a fairly large lattice. A comparison is
also made to the analytic prediction for the finite-size effect from chiral perturbation theory.

PACS numbers: 12.38.Gc

A lattice QCD calculation of the hadron mass spec-
trum with dynamical quarks [1] requires prodigious com-

puting resources, and the largest computing facilities
have been invested towards this goal [2-4). In spectrum
calculations the most fundamental systematic errors arise
from finite lattice spacing and from finite extent of the
lattice. In the calculations carried out to date the dom-

inant effort is therefore made on the largest possible lat-
tice size at the largest possible value of P=6/g, with

which it is hoped that the errors of these origins are
reasonably small. As-yet insufficient computing power,

however, makes a systematic survey of these effects
difficult, and, in particular, little has been studied so far
in regard to the finite-size effect.

For the purpose of elucidating those effects we have

been carrying out spectroscopic calculations with a
variety of values of the coupling constant ranging from
P-5.4 to 5.7 and of lattice sizes from 4 to 20 with the
Kogut-Susskind (KS) staggered fermion action for two

effective quark Aavors. In this Letter we report on the re-
sult for P 5.7 for the lattice sizes of 8 x 16, 12, and

20, for which we made the most extended runs. For the
16 spatial lattice we adopt the high statistics data ob-

tained by the Columbia University group on a 16 x 32
lattice [3].

The dynamical effects of two degenerate Aavors of
quarks are incorporated by the hybrid R algorithm with

the even-odd decimation trick [5]. We work with the
quark masses of ntv 0.01 and 0.02 in lattice units. The
molecular-dynamics step size [6] is chosen to be 8r
=0.01 for mq =0.01 and br =0.02 for mq =0.02 (we
take the normalization of Sr of Ref. [5]). Iterations are
made for r —600-1000 for each lattice size with one tra-
jectory corresponding to r =1. The periodic boundary
condition is imposed for quarks and gluons in all four
directions. The KS fermion operator D is inverted with
the conjugate gradient method, taking (~( —D Dxl[ l
3V(10 as the stopping condition [6] with V the
space-time lattice volume. The gauge configurations are
stored at every v =5, and hadron propagators are calcu-
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FlG. l. Effective mass m s(t) for n, p, and nucleon (N) on a
20'X40 lattice at P=5.7 and mq =0.0l.

lated on a lattice doubled or tripled in the time direction.
For hadron operators we use the standard local form [7]
for tr, p, and the nucleon (N), adopting the notation [7]
tr(PS), tr(SC), p(VT), and p(PV) to distinguish the
flavor quantum numbers for mesons [we shall denote
n'(PS) and p(VT) simply as tr and p below]. We also cal-
culate the mass of 6 using the nonlocal operators of Ref.
[8]. Two kinds of wall sources [9] are employed: For tr

and 6 the wall with unit value assigned to all sites on the
time slice t =0 is taken, and for the other hadrons the
unit source is placed on all sites at t 0 with even coordi-
nates. These choices are made to enhance the signal-to-
noise ratio in hadron propagators. Gauge links are fixed
to the Landau gauge on the entire lattice, and those on

the wall are further fixed to the Coulomb gauge.
In Fig. 1 we show the effective mass m, n(t) for tr, p,

and N on a 20 X40 lattice at mq=0. 01. These are ob-
tained by fitting the propagator at two (tr) or four (p, N)
successive time slices starting at t with a single (tr) or
double (p, N) exponential taking into account the period-
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TABLE I. Hadron masses in lattice units on a 20 x (20X2)
Iattice for P=5.7. The molecular-dynamics time interval for
propagator average is r =250-950 for mq =0.01 and
r =200-700 for mq =0.02. The bin size for a jackknife error
analysis is T: =50. Local operators are used for n, p, nucleon
(N), and its negative parity partner (N ). The notation for
meson flavor channels follows that of Ref. [7] with ir =—ir(PS)
and p=p(VT). The first row for A is obtained with the nonlocai
operator (6.2) of Ref. [8] and the second row through (6.3).
The chiral order parameter &gg& is normalized so that it ap-
proaches I/mv as m„-
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m„=0.01

0.244(3)
0.279(5)
0.417(7)
0.4i4(i i)
0.6 I i (i 0)
0.728 (17)
0.712(38)
0.657(i5)
0.587(7)
1.466(18)
0.027 51(13)

m~ =0.02

0.344(3)
0.391(3)
0.494(5)
0.502(6)
0.748(7)
0.970(29)
0.811(26)
0.799(19)
0.697(7)
1.515(17)
0.048 65 (19)
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ic boundary condition and the KS sign factors. Reason-
able plateaus are observed for t ~ 8 (tr), t ~ 4 (p), and
t ~ 6 (N), and a wiggle is not apparent in m, tt(t), at
least not one as conspicuous as that reported in Ref. [21.
We then extract the hadron masses by a g fit using the
full covariance matrix with a single exponential for t ~ 8
for the pion in the PS channel, and with two exponentials
including the opposite parity state for t ~ 6 for the other
hadrons. The result is given in Table I. The errors are
calculated with the jackknife method choosing the bin

size of r =50 where the jackknife errors level off.
In Fig. 2(a) the lattice-size dependence of the meson

masses is plotted for mq =0.01 with the data for the spa-
tial size I =16 supplemented by the work of Ref. [3].
We see a continuous decrease of both m and mo up to
L =20. In particular, the pion mass drops by 3/o (3o)
from L =16 to 20, and the p mass by 8'%%uo (5o). A more

conspicuous decrease is seen in the nucleon mass [Fig.
2(b)]; the decrease from L =16 to 20 amounts to 12o/o

(8o). We also note that the splitting of the negative par-

ity partner (N ) of the nucleon, expected for spontane-
ously broken chiral symmetry [10], is observed only for
L ~ 16, and the mass ratio m~-/m~ increases by 4%
from L =16 to 20. The plot of mass ratios m~/m~ vs

(m /m~) for our data with L =20 is shown in Fig. 3, to-
gether with the data of Ref. [3] for the size L =16 taken
at the same P =5.7. Compared with the latter, our

m/m~ is smaller by 4% at mv =0.01 and the decrease
may still be non-negligible at m~ =0.02 although a
definite conclusion is diScult due to the irregular varia-
tion of the data of Ref. [3] for mq =0.015-0.025. The
combined plot suggests that a substantial part of the up-
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FIG. 2. (a) Meson masses at P=5.7 and mv =0.01 as a func-
tion of the spatial lattice size L. Solid curve is the prediction
from chiral perturbation theory for the pion mass (see text).
(b) Spatial size dependence of the mass of the nucleon (N) and
its parity partner (N ). The open symbols at E= 16 are the
data of the Columbia University group [3].

ward shift of simulation data relative to the empirical
curves is caused by the finite-size effect [12]. From this
finding we should conclude that the understanding of the
finite-size behavior, in addition to the proper control over
the finite-lattice-spacing effect, is indispensable should
one extract the continuum values of the hadron masses at
the few-percent level.

It may be interesting to compare the finite-size eAect
seen here with that predicted in chiral perturbation
theory [13,14]. In Fig. 2(a) we added the predicted
curve [Eq. (26) in the first paper of Ref. [14]] for the
pion for the case of SU(2) x SU(2) chiral symmetry using
the value of m measured for the spatial size I =20 to set
the scale and the pion decay constant f =0.0403 in lat-
tice units as determined below. While chiral perturbation
theory correctly predicts that m decreases with the lat-
tice size, the amount of decrease is less than that seen in

the actual simulation data.
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FIG. 3. Mass ratio mg/m~ vs (m /m~) at P 5.7 for two

dynamical Aavors of KS fermions. Solid circles are our data for
the spatial size L =20, while open ones are those of Ref. [3)
with L = l6. Solid curve on the left which is drawn up to 0.3 of
the horizontal axis shows the prediction of chiral perturbation
theory, and the other curve that runs across the figure is from
the empirical quark-model mass formula including hyperfine
splitting [I l]. The experimental point is marked by a cross.

0.2

We now discuss some other aspects of hadron spectros-
copy with the data on a 20 &40 lattice. The mass of the
pion in the PS channel associated with the U(1) chiral
symmetry of the KS fermion satisfies very well the rela-
tion expected from PCAC (partial conservation of axial-
vector current); if we fit the two points for mq =0.01 and
0.02, we obtain m, =0.0011(28)+5.86(20)m~. The con-
stant term is consistent with zero within errors, and is at
least smaller by an order of magnitude than that quoted
by the Columbia University group [3]. We are then able
to extract the pion decay constant f with the aid of f,
= [3mq(gg)„,, -o/2m, ] /, which gives f =0.0403(12),
where we used (gg) =0.006 36(32)+2.114(23)mv ob-
tained from our data. If we take the inverse lattice
spacing a ' =2.27(10) GeV, determined by the rnid

=0
extrapolation of the p meson mass [m~ =0.340(16)
+7.70(90)m~], we find f,=92(3) MeV.

The pion in the SC channel is heavier than z(PS) by
14% at both mq =0.01 and 0.02, which shows the effect
of flavor symmetry breaking of the KS fermion at a finite
lattice spacing. The mass squared extrapolated to rnq 0
[m, tsar& =0.0031 (65)+7.48 (40)mv] is consistent with

zero, however, as is the case with the Nambu-Goldstone
pion x(PS) discussed above. The fiavor degeneracy is

considerably better for the p meson, for which the masses
from the VT and PV channels are degenerate within er-
rors.

For the nucleon our data yield mN =0.474(22)
+13.7(1.3)mq, giving a ' =1.98(9) GeV at mq =0. We
have also calculated the mass of h with the operators
(6.2) and (6.3) of Ref. [8]. The values we obtained are
systematically larger than that for the nucleon, support-
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FIG. 4. Chiral order parameter as a function of the lattice
size L for mq =O.OI at P 5.7. Data at L 4 and 6 are obtained
on 4 and 6" lattices, and the one at L l6 is taken from Ref.
[3]. Solid curves are the prediction of chiral perturbation
theory for O(2) and O(4) symmetries (see text).

ing that these operators in fact represent the h, wave func-
tion. For m~ =0.01, the LL-N mass difference is 100-200
MeV with a ' determined from m~. Our data, however,
are too poor to extrapolate to the physical quark mass.

The chiral condensate (gg) for mq =0.01 is shown in

Fig. 4 as a function of the lattice size L. The decrease to-
wards smaller sizes reflects the fact that spontaneous
breakdown of chiral symmetry does not occur for small
volumes. The figure shows a smooth increase with the
lattice size and an appreciable size effect at least up to
L =16. In this figure we also plotted the curve predicted
from chiral perturbation theory [Eq. (35) in the second
paper of Ref. [14]] with the parameters given above.
Here we present curves both for the O(4)=SU(2)
&SU(2) and the O(2) cases, since the identification of
the effective symmetry group is ambiguous. Neither of
them, however, lends a good fit to the simulation result.
It is possible that the pion mass in our simulation is still
too large relative to the other hadron masses to apply the
analysis of chiral perturbation theory. The same corn-
ment also applies to the pion mass discussed above.

In conclusion, we have demonstrated that a proper un-

derstanding of finite-size effects is important not only for
phase-transition analyses at finite temperatures [15] but
also for spectroscopy carried out close to the continuum
limit. A lattice size of La —1.4 fm corresponding to
L=I6 with a '=2.27 GeV at P=5.7 is clearly insuf-
ficient, and even La —1.8 fm for L =20 may not be
sufficient especially for the nucleon mass, for which at
least a 2% accuracy is required for further progress. We
also failed to confirm the validity of the predictions from
analytic formula for the finite-size effect. Full details of
the present calculation will be published elsewhere.

The numerical computation was made on HITAC
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