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Cosmological QCD Z(3) Phase Transition in the 10 TeV Temperature Range?
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At high temperatures, in the presence of quarks, QCD has one stable and two metastable Z(3) vacua.
We propose a scenario in which the Universe, after inflationary expansion for example at the grand
unified scale, lies in one of these metastable vacua. We estimate that the metastable vacuum decayed at
T~10 TeV. The inhomogeneities caused by this phase transition are over one-tenth of the horizon ra-
dius. As a result of a large pressure difference between stable and metastable vacua their density con-

trast is also large.

PACS numbers: 98.80.Cq, 12.38.Aw

Pure glue QCD has three degenerate Z(3) vacua at
high temperatures where the theory is deconfining. How-
ever, in the presence of fundamental-representation fer-
mions two of these vacua become metastable and only the
one with real expectation value of the Wilson line re-
mains stable. The purpose of this Letter is to investigate
what cosmological consequences this interesting vacuum
structure of QCD may have.

Quantitatively, the vacuum structure can be studied by
calculating the effective potential in a constant temporal
background gauge field [1,2]. Note that at finite temper-
atures, even a constant field 4g=A437T3+ A§Ts cannot be
trivially gauge transformed away because of the 1/T
periodicity of the Euclidean space in the temporal direc-
tion. Thus the background gauge field can have dynami-
cal significance. When considering transitions between
the different Z(3) vacua, it suffices to concentrate on
routes along the boundary curve of the allowed values of
the Wilson line in the complex plane, i.e., to choose
Ag=0. Employing the same notations as in [3,4], we
parametrize the background gauge field in the following
way:
= _2”_T q_li . 1)

g '3
To the lowest order, that is, at the one-loop level, the
effective potential [1,2] along the Ag direction is

A
A0=A378

Verlg) =3 22T*V (q), 2)
where
Vig)=f(q)+N,sVs(q), 3)

Vilg)=+% —f(5q+1)—1f(—3q+31), ()
and
f)=Iy(mod1)12{1 — [y(mod1)]}2. (5)

In Eq. (3) the first term is the gluonic and the second
term the fermionic contribution to the potential V(g).
The constant 35 is chosen so that the fermionic potential
also vanishes in the stable vacuum, and Ny is the number
of massless fundamental-representation fermions.

The full potential ¥ (q) for three different values of Ny,

and the fermionic part of the potential, ¥;(q), are plotted
in Fig. 1. When no dynamical fermions are present, we
have the three equivalent vacua at ¢ =0, 1, and 2. When
fermions are added to the system, the vacua at ¢ =1 and
2, which correspond to values exp( =% 27i/3) of the Wil-
son line, become metastable.

The g =0 vacuum is the usual perturbative 4¢9=0 vac-
uum. In the ¢ =1,2 vacua, A§ is a multiple of 2x7/g.
The physical differences of the vacua are most clearly
seen by considering their pressures, equal to minus the
free-energy density. From the effective potential the
pressure difference between the stable vacuum (pgpie)
and either of the metastable vacua (pns) is for all
T> T, =150 MeV

Pstable — Pms = 51 TN, T*. 6)

This should be compared to the usual expression for the
pressure in the Universe, which we identify as the pres-
sure in the stable vacuum:

Dstable = 9%7[23* T, 7)

Between the grand unified and electroweak scales the
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FIG. 1. The full dimensionless potential ¥'(g): dash-dotted
curve, Ny=0; dashed curve, Ny=2; solid curve, Ny=6. The
fermionic part of the potential 5V,(q): dotted curve. The third
derivative of the gluonic (N;=0) potential is discontinuous
when g is an integer, and V;"(q) is discontinuous when

g(mod3)=1%, % or 7.
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effective number of relativistic degrees of freedom (g4 )
in the minimal standard model is 106.75 and the number
of massless SU(3) fermions is 6. In this range Eq. (6)
means that the pressure in the metastable vacua is only
13% of the pressure in the stable vacuum. In fact, Egs.
(6) and (7) imply that in this range

Pms= 50 T °gmsT*, (8)
where
gms =28+ § 6Npum+ & (12— N, (©)

In the metastable vacua adding quark flavors actually de-
creases the pressure (even when quarks are added togeth-
er with leptonic members of family, i.e., Npm=N//2).
However, the bosonic degrees of freedom in the minimal
standard model save the pressure from becoming nega-
tive: gms=13.42 for Ny=6.

Note the main differences between Eq. (6) and the
corresponding quantity in usual first-order symmetry-
breaking transitions: Equation (6) holds for all T>> T,
and only depends on T (and on quark masses), not on any
symmetry-breaking scale. Thus the effective potential
Ver cannot cause any inflation. Inflation would need a
constant vacuum energy density as an extra scale.

In the very early Universe domains of different Z(3)
vacua have been created, for example when the grand
unified theory broke to SU(3) x[SU(2)xU(1)]. Howev-
er, if the metastable vacua were within one causal hor-
izon, they would collapse in a time of the order of the
Hubble time because of the huge pressure difference. But
let us suppose that the scale factor increased exponential-
ly due to inflation in the grand unified scale. Although
the presence of domain walls associated with the different
vacua may have had an influence on the inflation, it
seems likely that the radius of a typical domain after the
inflation would reach far beyond the horizon. In this case
the whole causal region would stay in the metastable vac-
uum until it either tunnels to the stable vacuum or until
the temperature drops close to that of the quark-hadron
phase transition.

In the following, we will calculate numerically the de-
cay rate of the metastable vacua, already estimated by
Dixit and Ogilvie [4]. The general framework is dis-
cussed in [5,6].

We will employ an effective-action approach used in
[3,4]. In addition to the quantum potential V.x(q), the
classical tension term for the gauge field contributes to
the effective action as well. The validity of this ap-
proach—treating ¢ as a constant when calculating the
effective potential and otherwise as a field g(x)—has
been discussed by Bhattacharya et al. [3]. At high tem-
peratures we get the following effective three-dimensional
action:

slq) =1—6;/-—2-—7r2#fd3x'[§- VIV, (10
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where x' is a dimensionless space coordinate,
x!=(gT/N2)x; . an

The probability of tunneling per unit time per unit
volume is [5,6]

F=ux2 ¥2g3(S,/21)32T% ~% (12)

Essentially the tunneling rate is T#exp(—S,), where the
so-called bounce or bubble action S, =Slg,] —Slgoms] is
an O(3)-symmetric extremum of the action with the ap-
propriate boundary conditions. With the function g, (r)
we denote the bubble solution and with the constant goms
the value of the field in the metastable vacua. The preex-
ponential factors arise from functional integration over
the Gaussian fluctuations around this extremum. In Eq.
(12) M is a dimensionless factor and « is the dimension-
less determinant,

. det'[—=V2+V"(g, (¥ |
detl =V 4+ V" (goms)]

1/2

(13)

Here det’ denotes the determinant computed with the
zero eigenvalues (from the three translations of the bub-
ble center) omitted. In numerical estimates we shall as-
sume that the factor M« is of the order of unity.

Numerically computed values for the bubble action
with different numbers of fermions are shown in Table I.
Qualitatively, when Ny is small, the solution resembles a
thin-wall bubble. However, for bigger values of Ny this is
not the case. From Fig. 2 we can see that for V,=6 the
bubble core is not even close to the true vacuum. Dixit
and Ogilvie [4] have estimated values of the bubble ac-
tion for SU(N) employing the thin-wall approximation.
In the limit of small N, their results coincide well with
the exact numerical values presented in here. However,
for the cosmologically most interesting case Ny =6 their
approximative method already overestimates the bubble
action by 17%. Even this is surprisingly accurate, taking
into account that the true bubble solution is far from a
thin-wall bubble. For the tunneling rate relatively small
differences are naturally important due to the exponentia-
tion in Eq. (12).

Next, let us estimate when the metastable vacuum de-
cays in cosmology. At time 7 the fraction of space still in

TABLE 1. The bubble action, relevant for calculation of the
decay rate of the metastable vacuum, for different numbers of
fundamental-representation fermions.

Ny g’S,
2 1030
3 444
4 236
5 142
6 92.3
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FIG. 2. Bubble profile g»(r') for SU(3). Dashed curve,
Ny=2; solid curve, Ny=6. Of the metastable vacua we have
chosen the one at ¢ =2 and so the true vacuum is at ¢ =3 (see
Fig. 1). Using Eq. (11) we can deduce that the bubble radius is
approximately 3/(gT/+/2) for N;=6.

the metastable phase is [7]

fms(1)=cxp[—j;’dt'r(t')V(t',t)] , (14)

where V(¢',t) is the volume occupied at the time ¢ by a
bubble nucleated at the time . Here we assumed that
the time scale for the essential part of the phase transi-
tion is shorter than the Hubble time so that expansion of
the Universe could be neglected. The bubbles grow at
roughly the speed of sound; on the other hand, the bubble
action decreases rather slowly in time. So we could get a
rough estimate for the phase-transition time ¢ solving
the equation T'(tp )t g =1.

However, the phase-transition point can be solved more
accurately [8]. Here we will follow the formulation of
[9]. The phase-transition time ¢, is determined from the
equation

87rt*3F(tp()/[Sé(tpl)]4=l , 15)

where Sp =dS,/dt and v is the velocity of the bubble front
for which we will use the sound velocity, v=1/v/3. The
average distance of the nucleation centers is

13,
Rnuc.=—(§’2—‘.
—S[;(tpl)

In the present case we have, between the grand unified
and electroweak scales when N, =6,

(16)

92.3
Sy (1) = ,
(ASPETTS)
y a7)
92.3 3 11 —2N,/3
=Syt == Po, fo=—"——
b ) g(T) 2ﬁ0 ﬁO ]67[2
where, in the metastable vacuum,
1/2
M planc
T2 = 453 Plan‘/kz . as)
16n (gms)

Putting Egs. (9), (12), (15), (17), and (18) together, we
arrive at the following approximate equation, which
determines the phase-transition temperature 7 p:

92.3

5
— +=Ing(T,)—12.7=0. (19)
g (T, 2 e

MPI;mck
Ty

4In

To get an estimate for the phase-transition temperature
T, we use the two-loop formula

g ~AUT) =2BoIn(T/A7)+ (B1/B)InlIn(T /A1,

B1=(102—38N,/3)/(16x%)? and fix its A parameter by
using results from particle physics experiments, and by
using 4 =3T as the momentum scale [10].

A careful analysis of the uncertainties in different ex-
periments gives the following value for the strong cou-
pling: a;(Mz)=0.113%£0.004 [11]. Using the central
value a,(Mz)=0.113 and N,;=5 at Mz the above
reasoning implies that A7 =52 MeV. Now we get from
Eq. (19) g(T) =091 and T, =19 TeV.

In this estimate, the small fluctuation determinant in
Eq. (12) was put to unity. If Mx=0.1 or 10, we would,
respectively, get 17 or 22 TeV for the phase-transition
temperature. In other words, T’y is not very sensitive to
the numerical value of the determinant. However, the
phase-transition temperature does depend rather strongly
on the fixed value of the coupling: a;(Mz)=0.10 and
0.14 would give T =9.5 and 53 TeV, respectively. Us-
ing p =T as momentum scale would give T =45 TeV
instead of 19 TeV.

We also give values for the phase-transition tempera-
ture for different numbers of quarks: N,=S5, T, =450
GeV; Ny=4, T =20 GeV; Ny=3, Tyu=17 GeV;
Ny=2, T, =290 MeV. Their ratios are roughly like
those of quark masses, without any obvious reason. Here
we again employed the relation p=3T and used
a;(M2z)=0.113 and N;=5 at Mz. Within our scenario
only the six-quark case is relevant.

Next, we will solve the average distance of the nu-
cleation centers immediately after the phase transition,
Ruucl, from Egs. (16) and (17). We will compare it to
the horizon radius, which at T=19 TeV is Rpor =2t
~1.1%x10 "®m. We find that

g(Tpl)U

=0.13.
Rhor 0

(20)
The critical bubble radius, i.e., the bubble radius immedi-
ately after the nucleation is, from Fig. 2, only 2
x10 ™" Rpor.

The nucleation distance R, obtained is quite large.
This situation that a few bubbles have time to expand and
fill the horizon before a significant number of new bub-
bles are nucleated is quite contrary to the situation in the
electroweak or quark-hadron phase transition (supposing
they are of first order), where a vast number of bubbles
are nucleated within a short period of time. The explana-
tion is that in the QCD Z(3) phase transition the tunnel-
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ing rate increases slowly with time, only as the exponen-
tial of a power of log(z), whereas the more familiar cases
the rate increases very rapidly after the critical tempera-
ture 7.

Observable consequences from this phase transition at
~10 TeV may ultimately have arisen via the significant
density inhomogeneities produced: They are both large in
relative scale [Eq. (20)] and, because the pressures of the
true and metastable vacuum differed by such a large
amount, large in intensity. These inhomogeneities may
have affected later phase transitions. For example, at the
QCD phase-transition temperature 7.== 150 MeV the
distance Rpyci=1.4x10 "7 m is redshifted to 2 cm. This
happens to be practically equal to the value for the nu-
cleation distance in the quark-hadron phase transition,
obtained from a pure-glue lattice Monte Carlo deter-
mination of the surface energy between the quark and
hadron phases [12], but now the density contrast is likely
to be larger.

The main uncertainty in the scenario is clearly the
creation of domains of metastable vacua. This depends
on so far unknown phenomena at energy scales at which
QCD became dynamically independent; at present one
can only assume that our part of the Universe had been in
a metastable vacuum originally.

Finally, it is interesting to note that 7, is quite close to
the sphaleron scale ~zMy/aw = 10 TeV. This closeness
seems purely coincidental.
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