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Probability Distributions of Local Liapunov Exponents for Small Clusters
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The probability distribution of the largest local Liapunov exponent is evaluated for a classical Ar3

cluster at different values of the internal energy E, for a set of increasing values of the length in which

the trajectory is partitioned. These distributions can be directly related to the evolution of ergodic be-

havior, particularly to how it exhibits distinctive, separable time scales which depend strongly on the en-

ergy of the system. Therefore, even though the inequivalence of ergodicity and chaos prohibits a

Liapunov exponent itself from being a quantitative index of ergodicity, we find that the sample distribu-

tions used to ei aluate Liapunov exponents nevertheless can be used for this purpose.

PACS numbers: 05.45.+b, 36.40.+d

The Ar3 cluster has recently proved to be useful as a
prototypical system in which to study details of phase
changes in clusters, especially in the context of the ques-
tion of how small systems explore their phase space
[1-3]. The classical, conservative three-body Lennard-
Jones system has been found to be chaotic even at low en-

ergies, where the power spectrum displays largely
normal-mode structure. The degree of chaotic behavior
as measured by the Kolmogorov entropy is nonzero at an

energy corresponding to a mean temperature as low as 2

K. The K entropy increases with energy, then decreases
sharply in the range of entry into and passage through
the saddle regions of the linear configurations of the po-
tential surface, and finally increases again at still higher
energies [1].

At energies just high enough to allow passage over the
linear saddle, the phase space seems to separate into a re-

gion of highly chaotic behavior that represents the motion
in the well, and a region with much more "ordered" dy-
namics, that represents the motion across the saddle. In

fact, above the transition energy the short-term average
kinetic energy has a bimodal distribution that seems to
correlate with the local values of the K entropy [1,3].

In previous work on the ergodicity of clusters, no exam-
ination was made of the systematic evolution from short-
term to long-term behavior and only the statistic of global
Liapunov exponents was examined. We suspected, as had
others who used simple models as tests [4,5], that one
could learn about this evolution by examining the proba-
bility distribution of the approximate values of the largest
Liapunov exponent as a function of the duration of the
interval used to obtain the time average, which is

equivalent to the length of the averaging intervals into
which the molecular-dynamic trajectory is partitioned.

Those distributions make a powerful instrument to gain
insight into the intriguing questions of the separation of
phase space into high-chaos and low-chaos regions, and
how the extent of ergodicity evolves in time for a few-

body system.
To describe the classical Ar3 cluster we take the

Lennard- Jones Hamiltonian
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with m 39.45 amu, o 3.4 A, and e=1.67&10 ' erg.
To generate the trajectories we use the following
molecular-dynamics algorithm:

r;(I„)-r;(I„,)+rv;(t„~)+ —,
' r'a;(t„~),

v;(t„) -v;(t„()+—,
' -z[a;(t„)+a;(t„()]

(2a)

(2b)

(the velocity version of the Verlet algorithm [6]), with a
time step r 10 ' s, which makes one vibrational period
correspond to 100-150 steps. In Eqs. (2), r;, v;, and a;
are the position, velocity, and acceleration of each argon
atom, i =1,2, 3. Initial conditions fix the center of mass
and angular momentum at 0, and they remain constant
during the simulation; the algorithm also conserves the
total energy up to I part in IOs-10 for millions of time
steps. Finally, the temperature is simply defined through
the equipartion theorem as the mean vibrational kinetic
energy for the run.

As stated, our goal is to obtain and study the distribu-
tions of sample values of the largest Liapunov exponent
on various time scales. For a tI-dimensional space the lo-
cal Liapunov exponents A, ~l,X2, . . . ,kP are calculat-
ed by propagating the Jacobian along the trajectory for
N —I steps, yielding

~(e) ~OV) g N) N —[

[2 ', 2 ', . . . , 2 ] magnitude of eigenvalues of Q J(x,)
n 0

1]N

(3)
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where J(x„) is the Jacobian matrix of the propagators for
each phase-space variable [7,8]. Of course, the Liapunov
exponents would be found exactly by taking the limit
1V ~. The largest Liapunov exponent quantifies the
average divergence of two initially nearby trajectories for
each time step, since repeated application of the Jacobian
matrix turns an arbitrary vector in the direction of the
eigenvector corresponding to the largest eigenvalue.

The algorithm for computing the Liapunov exponents
involves calculating the Jacobian matrix at each time
step, multiplying that matrix by the cumulative product
of all the previous ones, and diagonalizing the final prod-
uct after N time steps. Those eigenvalues are then con-
verted to Liapunov exponents by taking their logarithm
and dividing by N. This method, equivalent to that of
Benettin, Galgani, and Strelcyn [9] in principle [10], has
been verified in this work to be equivalent in practice also.

In the present case one is interested in calculating the
largest Liapunov exponent A, =max;[)t, ; j for a set of
increasing values of N. To speed our algorithm by saving
matrix multiplications we limit ourselves to the following
values of N: [2'j, i 7,8,9, 10, 11,12, 13 or N; =[128,
256, . . . , 8192},since for each of these values the product
after N; time steps can be obtained as the product of two
N; ~ matrices.

Our simulations typically run for 10 -10' time steps
(a total time of 10 —10 s), and start from a small
number of different initial conditions that have already
equilibrated. The distributions presented in this work
contain from =10 sample values for trajectories of
length 128 to = 10 sample values of the Liapunov ex-
ponents for trajectories of length 8192, and no smoothing
routine has been applied to them. Much shorter simula-
tions (=10 ) were found to give the same qualitative
amount of information, although the actual plots look
much rougher and might need smoothing routines.

In Figs. 1(a)-1(d) we present our results for the ener-
gies [ —1.394, —1.165, —0.939, and —0.792j x 10 '4 erg
per atom, corresponding to the mean vibrational tempera-
tures (T) =18.15, 28.44, 30.65, and 36.71 K. To evaluate
(T) we average the kinetic energy over the entire run, and
then convert to temperatures; the results will be given
without explicitly indicating the averaging, with the con-
vention that temperatures always refer to long-time aver-
ages. In these pictures the distributions gjv,. (A. ) dA, [or the
number of times X, was found in a bin of size 2.5 X 10
bits/(10 ' s) for trajectories of length N;] are plotted
for N; =[256,512, . . . , 8192]; the Liapunov exponents
are given in bits/(10 ' s). The area under each curve is
proportional to the number of sample intervals for that
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FIG. I. gg(k) vs A. at (a) T=18.15 K, (b) T=28.44 K, (c)
T=30.65 K, and (d) T=36 71 K for N=256 (+.), N =512
(0 ), N =1024 (&), N =2048 (0), N =4096 (x ), and
N 8192 ('7). The units for k are bits/(10 ' s).
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curve and the area under the curve N;=256 is 1. The
reason for using this normalization is mainly graphical
(this way of plotting gives all the results at a glance), but
also the scaling reflects the fact that in reality we have 2
times more data for the distribution gjv, than for the dis-
tribution g~,„.

We immediately see that the distributions for T =
18.15 and 28.44 K are unimodal for any N;, while for
T 30.65 K there are two peaks for N; 256, 512, 1024,
and for T 36.71 K there are two well-defined peaks only
for N; 256. From previous work [1] we know that up to
=T 28 K the cluster has insufficient energy to
penetrate the saddle regions, while at T ~ 30 K the clus-
ter explores pathways over its three saddles around the
equilateral minimum on the potential surface. Therefore
our results are consistent with the interpretation of the
phase space separating into a highly chaotic region with

high kinetic energy and a much less chaotic region with

high potential energy, and, in fact, at both T 30.65 and
36.71 K the Liapunov exponent distribution strongly
correlates with the distribution of the short-term averages
of kinetic energies. Of course, Fig. 1 also gives an esti-
mate of the relative importance of the two regions.
Moreover, we can see that while for T 30.65 K the sep-
aration of trajectories into trajectories that move in the
high-chaos region and trajectories that move in the low-

chaos region is meaningful up to trajectories of length
N; 1024, at T 36.71 K trajectories of length N 512
already overlap both regions.

Table I gives the average of the distribution for each
curve. Whatever the temperature, )1, shifts toward lower
values with increasing N, implying that the asymptotic
value for the largest Liapunov exponent can only be ob-
tained by trajectories of more than 10 steps.

We would also like to point out that from our distribu-
tions we can easily derive the N approximation of the
"spectrum of effective Liapunov exponents" [11]4~(l)

(1/N) ln[P(A, ~,N)/P .,„(N)]; plots of this quantity
present a certain degree of data collapse with N, and will

be discussed in a future publication.
Figure 2 shows a dramatic result concerning ergodicity.

Here are two N 256 distributions for e —1.610

X10 ' erg per atom, T 4.15 K, whose only difference
is the initial condition of the argon cluster. The distribu-
tions differ markedly, and show no tendency to converge
over all the time scales we have probed, however long the
run is. In fact, we have checked that the "shapes" of the
distributions stay unaltered for tens of ps for all lengths
of partitioning N;. Moreover, the averages and the stan-
dard deviations of these distributions depend on the initial
conditions for any N;. Thus we conclude that at this tem-
perature there is total nonergodicity up to at least tens of
ps. In this case even averaging over 10 time steps will

still only give a local Liapunov exponent [12,13].
We observe this nonergodicity up to T=16 K: We

have probed the energies [—1.526, —1.457, and —1.429j
x10 ' erg per atom, corresponding to the mean temper-
atures T 10.10, 14.56, and 16.13 K; again, all these dis-
tributions depend on the initial conditions. However, the
higher the temperature, the smaller the dependence on
the initial conditions; at T 16.13 K distributions derived
from different initial conditions visually almost coincide,
even though the average and standard deviations of the
distributions are still different.

We have also evaluated the time autocorrelation func-
tion,

([Xg(t ) —4,~(t ))][Xg (0) —(Z~(0))])rN(t)-
([AN(0) —4N(0))]')

for the entire range of energies. At high energies, or en-
ergies corresponding to mean temperatures T ~ 18 K, it
appears that there are no long-time correlations even if
the correlations at small values of N persist longer than
the correlations at large values of N.

Instead at low temperatures the time autocorrelation
function I g (t ) shows long-time correlations, sometimes
arranged in periodic patterns, and strongly dependent on
the initial conditions. Figure 3 is an example of our re-
sults for the time correlations at T 14.56 K for the
N 256 distribution and a particular but arbitrary choice
of the initial conditions. We also give the time autocorre-

.20 x

TABLE I. Average values of A. at T 18.15, 28.44, 30.65,
and 36.71 K, for N 128, 256, 512, 1024, 2048, 4096, and
8192. The units are bits/(IO ' s).
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T 18.15

128 1.13x 10
256 6.98 x 10
512 4.92 x 10

1024 4.08 x 10
2048 3.57 x 10
4096 3.36 x 10
8192 3.28 x 10

T 28.44

1.63 x 10
1.09 x 10
9.58 x 10
9.00x10 '
8.83 x 10
8.78 x 10
8.76 x 10

T 3065

1.47 x 10
1.05x10 '
8.98x10 '
8.29x 10
7.98 x 10-3
7.89x 1Q

7.86x10 '

T 36 71

1.59 x 10
1 05x10
8.84 x 10
7.76x10 '
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FIG. 2. g2q6(l, ) vs A, at T 4. 15 K for two different initial
conditions.
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that of lower ergodicity, and grows shorter with increas-
ing energy.

These results show how a study of the sample distribu-
tions of Liapunov exponents, as they evolve from local to
global, gives insight into how ergodicity evolves in time.
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K.
FIG. 3. I n(r) for N 256 at T 14.56 K and at T 18.15

lation function at T 18.15 K for the same N 2S6 dis-
tribution, showing the normal fast decay to zero.

ln conclusion, we have evaluated the distribution of the
sample values of the largest Liapunov exponent for a
classical Ar3 cluster at diff'erent values of the total energy
(and therefore of the mean temperature T), partitioning
the trajectories into longer and longer intervals. At low

energies, and even for the longest interval, the shape of
the distribution depends on the initial conditions, a signa-
ture of the failure of the system to exhibit ergodicity even
on long time scales. At intermediate energies the system
is found to be ergodic with unimodal distribution of kinet-
ic energies. At energies high enough to allow the system
to pass into and across the saddle region separating local
potential minima the distributions clearly show the sepa-
ration of the phase space into a highly chaotic region with

high kinetic energy and a much less chaotic region with

high potential energy. These intermediate to high energy
regions exhibit two time scales distinguishable by the
change from bimodal to unimodal distribution of local
Liapunov exponents; the shorter time scale is naturally
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