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Six-Vertex Model, Roughened Surfaces, and an Asymmetric Spin Hamiltonian
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For a particular choice of vertex weights, the two-dimensional six-vertex model can be viewed as a
probabilistic cellular automaton. Physically it describes then the surface slope of a two-dimensional solid

which grows through deposition. Based on this analogy we predict the large-scale asymptotic behavior of
the vertical polarization correlations. The transfer matrix commutes with a nonsymmetric spin Hamil-

tonian. We diagonalize it using the Bethe ansatz and prove that the dynamical scaling exponent for ki-

netic roughening is z 2 in 1+1 dimensions.

PACS numbers: 05.50.+q, 05.70.Ln, 64.60.Ht, 75.10.Jm

In models of statistical mechanics we may interpret one
of the spatial coordinate axes as time. The transfer ma-
trix in this direction is regarded as the propagator for a
time evolution. Mostly this corresponds then to a quan-
tum field theory with one spatial dimension less than the
original model. In certain cases also the interpretation as
a stochastic time evolution is possible and the correspond-

ing object has been named probabilistic cellular automa-
ton (PCA) [1,2).

The two-dimensional six-vertex model is no exception
to the general rule (cf. Fig. 1) [3]. Time runs upwards.
The ice rule ensures that lines do not merge, stop, and
bend backwards. Therefore we may interpret them as the
world lines of particles. The point of interest is that in

this way the six-vertex model can be viewed as a one-
dimensional driven lattice gas, which corresponds to the
slope of a growing surface. Thereby we arrive at novel

predictions for the vertical polarization correlations.
Conversely we will diagonalize a spin Hamiltonian com-
muting with the transfer matrix of the six-vertex model
through the Bethe ansatz and extract from it the dynami-
cal scaling exponent for (1+1)-dimensional kinetic
roughening.

Let o (oi, . . . , otv) be the spin configuration of one
row of the six-vertex model, where ot 1 stands for occu-
pied and ot —I for vacant, and let (ol Tits') be the

transfer matrix with periodic boundary conditions from
row m with spin configuration cr to row m+ I with spin
configuration tr'. (crlTltr') can be regarded as the transi-
tion probability from cr to cr' in one time step provided the
normalization condition
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FIG. l. A six-vertex configuration and the corresponding
Boltzmann weights.
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holds. Then, in each sector of fixed vertical polarization
(particle number) y, T can be normalized simply by di-

viding through with g(y). [We remark that, in general,
the transition probability is given by y '(cr)(o)T~cr')
x y(o')ko ' with y the maximal right eigenvector and ko

the maximal eigenvalue of T. As a rule this transition

probability is nonlocal and a probabilistic interpretation

may not be so useful. ]
Equation (I) is ensured by imposing the relation

casa)6 (cO~ C04)(C02 a33) (2)

for the vertex weights (compare with Fig. I). To verify

our claim the simplest way is to note [3,4] that in this

case T commutes with a spin Hamiltonian H given by

N

H ——g [cr,"a)+) —I +ie(oj"crj3'+) oj3oj—+))], (3)
j I

The local current is written here as the sum of a sys-
tematic current j, a diffusive current —vc)u, (x)/|IX, and
a fluctuating current which is Gaussian ~hite noise with
correlations (J,(x)J, (x')) yb(t —t')b(x —x'). The last
two terms are partly phenomenological. The real micro-
scopic input is the systematic current j. From the
transfer matrix we obtain [I I]

j(y) 2(1+y)/[a(1 —y)+(I+y)]
with a co~(c02 —c03)/co2(co~ —co4). If we are interested
only in the fluctuations around a uniform profile, then it
suffices to expand j(y) up to second order, higher orders
being irrelevant. Equation (5) becomes then the noisy
Burgers equation,

u, (x)+ c(y) u, (x)+—X(y) u, (x) '
x

O'N4.
~ cr~ Her.e cr~ (crj",of, o~') are the Pauli spin ma-

trices at site j satisfying [erg, of] =B~t2io~ plus cyclic per-
mutations and the asymmetry parameter e is given by

—v u, (x)+J, (x) -0,
|Ix

(7)

e (QP2a34 col c03)/(a32a34+ a3 I c03) ~ (4) where we have written the fluctuating profile as y+u, (x)
and

[e~ ~ I. (o~ T~o'& are the matrix elements of the operator
T in the o" representation. By a straightforward compu-

tation, H has in each sector a nondegenerate ground

state, which has the eigenvalue zero and gives equal

weight to each spin configuration. Since [T,H] =0, T
and e ' have the same maximal eigenvectors by the
Perron-Frobenius theorem, which implies (I).

For t. 0, H is just the isotropic Heisenberg ferromag-
net [5-7]. For e&0, H is nonsymmetric and has there-

fore no quantum-mechanical interpretation. Ho~ever, H
is still the generator of a Markov semigroup, a fact to
which we will return shortly.

Before continuing our analysis we should clarify which

part of the phase diagram of the six-vertex model is sin-

gled out by relation (2). Using the standard labeling of
vertex weights (cf. Ref. [3] and Fig. I), relation (2)
means that A~ I with e 0 corresponding to 5=1,
where 2h = (co~ m2+ 34 a3sc06) (a3i m2c03c04) . Here

—It/2

y is fixed, but without constraint y would stick at either
+I or —I [3). The free energy as a function of the hor-

izontal field h is convex downwards and has a linear piece

[8,9]. Relation (2) implies that h lies inside the interval

of phase coexistence.
As can be seen from the Fig. I, g(y) '(cr)T~ct') is the

transition probability for particles jumping randomly to
the right constrained by exclusion. Because of the con-

servation law, this is a diffusive system of particles driven

by some external force. If we coarsen somewhat in space
and time, then the local vertical polarization u, (x) is

governed by a fluctuating equation of conservation type
[10],

u, (x)+ j(u, (x)) —v u, (x)+J (x) =0. (5)cI

t x clx

S(k, t) ~ y e'""'q)((k y/2v)' k(t[ )
2Y

(9)

for small k and large t (hydrodynamic regime) with the
static compressibility y/2v I —

y . We note that the dy-
namic scaling exponent is z & . If t. =0, then j is linear
and k =0. Thus Eq. (7) becomes linear and the
exact dynamic structure function is (y/2v) exp(ikct
—vk (t ~). In particular, the dynamic scaling exponent is

z =2.
In conclusion, we arrive at the following prediction for

the vertical polarization correlation function for the six-
vertex model. We assume (2), e&0, and fix y. Then the
Fourier transform in the horizontal direction is given by
(9) where t refers to the vertical direction. In particular,
along the ray with slope c(y) ' the asymptotic decay isr, with r the relative distance. Along all other direc-
tions the decay is exponential with a crossover determined

c(y) j'(y), A, (y) =j"(y) .

Equivalently, we may introduce height variables hj.

through hj+~ —hj-(oj+~+oj)/2. The h dynamics de
scribes then the surface of a two-dimensional solid which

grows through deposition of pieces of various lengths at
local surface minima. Also evaporation processes are al-
lowed. The phenomenon of interest is kinetic roughening:
One starts with a flat surface which roughens as the solid

grows. If we substitute h,
'

u, in Eq. (7), then it goes
over to the (I+ I )-dimensional Kardar-Parisi-Zhang
equation whose (2+ 1)-dimensional variant describes
growing surfaces in three space [12,13].

For t. &0 also A, &0. The dynamic structure function
S(k,t) for the noisy Burgers equation is then expected to
be of the scaling form [13,14]
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by (9).
Instead of transferring along one of the lattice axes, as

done here, another option would be the diagonal transfer
matrix. It can be viewed also as a PCA [15,16] provided
the vertex weights satisfy tos-roy —toy and to6=ro~ —to4,

which is more restrictive than (2). The symmetric case is
studied in Ref. [17].

We may turn our story around and use the exact solu-
tion of the six-vertex model with the goal of obtaining the
scaling exponent z —', and the scaling function ip. It is
less cumbersome to work with the spin Hamiltonian (3)
commuting with the six-vertex transfer matrix. In fact,
(cr1e ' 1o') is again a transition probability although
now continuous in time. As can be checked from (3) it
already satisfies the normalization condition (I) with
T exp( —tH) and g(y) I. According to this transi-
tion probability, particles jump with rate (1+e)/2 to the
right and with rate (1 —e)/2 to the left constrained by
single-site oceupaney. Such a model is known as an
asymmetric simple exclusion process in the probabilistic
community [18]. Among those studying kinetic roughen-
ing it is the single-step model [19]. In the surface inter-
pretation local minima are filled with rate (I+e)/2 and
local maxima evaporate with rate (1 —e)/2.

The dynamic scaling exponent describes the long-time
decay as dominated by the spectral gap of H. If EN
denotes the real part of the first excited state of H, then
we expect that Eg =A ' for large N. It is known that
the Heisenberg Hamiltonian has a spectral gap of the or-
der N z uniformly in the density [20]. This covers the
case e 0. For e/0 we turn to the Bethe diagonalization
of H [11]. In a short announcement [21] Dhar states
that for the completely asymmetric (e I ) case the Ham-
iltonian (3) can be diagonalized through the Bethe ansatz
and that the spectrum has a gap of order N J . No fur-
ther details have appeared yet.

We label a spin configuration by the location of the up
spins, m (m ~, . . . , m„) with the convention 1 ~ m ~

& m2 « m„~ N. Let 1p) be a right eigenstate for
H, H)p) E1&). It may be expanded in the above basis
as

(10)

The Bethe ansatz consists of choosing the expansion
coefficients as

where P (p(1), . . . ,p(n)) denotes a permutation of
(1, . . . , n) and the sum is over all permutations. The ei-
genvalue problem for periodic boundary conditions is
solved by (11) provided the complex "wave numbers" ZJ,

j=1, . . . , n, satisfy the Bethe equations,

(zJ) = / w(zJzt),
j&l I

2zJ —(1+f)zJ zt —(1 —e)
W(z, ,zt) =-

2zt —(1 + e)ZJzt —(1 —e)

(i2)

for j=i, . . . , n T. he expansion coefficients in (11) are
then recursively defined through

X(. . . ,p, q, . . . ) -W(z„,z, )X(. . . ,q, p, . . . ). (i3)

In general (12) must be solved as a system of n equa-
tions. However, for e 1 a drastic simplification occurs:
The eigenfunctions become determinants, i.e.,

f~ detAt At t (zt) '(I —zt ) (i4)

j 1, . . . , n The c.orresponding energy is

n

E=—g (i —z, ).
2 j

To solve (15) we pick a Y and take its nth root. Each ZJ.

then satisfies a quadratic equation having two solutions.
To each choice of n out of 2n solutions there correspond
an eigenvector and its eigenvalue. Finally for each par-
ticular choice we have to determine Y through (15).
For the ground state we obtain Y 0 and ZJ 1 for

j 1, . . . , n For .the first excited state we find 1Y'J"1

I+0(1/n) and arg(Y) tr. The resulting ZJ's lie on a
club-shaped curve in the complex plane. To our surprise
they are not obtainable through a small perturbation
of the ground state. By a careful examination of the
complex contour integral, we obtain analytically Etv
= (6.50917. . . )N J for large N.

Finally, we remark on a connection of the present work
with the theory of conformal invariance [22]. It is well

known that the symmetric Heisenberg spin Hamiltonian
is conformally invariant in the antiferromagnetic regime,
which corresponds to reversing the sign in (3). Although
the mapping to growth models is lost in this case, the
Bethe ansatz solutions remain as before, except for an in-

version of the spectrum. Therefore, it could be an ideal
test ground for extending conformal field theory to non-

Hermitian models. For the half-filled system and e 1

we determine analytically the spectral gap for the "anti-
ferromagnetic" version of (3) [11]. The gap turns out to
have a constant imaginary part and a real part of order
I/N consistent with the finite-size scaling predictions of
symmetric conformal theory [22,23].

If in addition the system is half filled, n N/2, then the
Bethe equations read, with zJ —= (1+ZJ )/2,

n

[(i+z,)(1 —z, )]"-—4"Q [(zt —I)/(z, + i)]=-Y,
l 1

(is)
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