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Synchronization and Computation in a Chaotic Neural Network
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Chaos generated by the internal dynamics of a large neural network can be correlated over large spa-
tial scales. Modulating the spatial coherence of the chaotic fluctuations by the spatial pattern of the
external input provides a robust mechanism for feature segmentation and binding, which cannot be ac-
complished by networks of oscillators with local noise. This is demonstrated by an investigation of syn-
chronized chaos in a network model of bursting neurons responding to an inhornogeneous stimulus.
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Coherent modes in extended chemical, biological, and
fluid systems have been the focus of considerable interest
[1,2]. Theoretical studies of these phenomena include
systems of coupled limit-cycle oscillators [I], the complex
Ginzburg-Landau system [1-3], and the lattices of cou-
pled maps [4,5]. Recent experiments in neurobiology
have renewed interest in the cooperative dynamical prop-
erties of large neuronal systems, in particular, the emer-
gence of synchronized patterns of neural activity and
their computational role. Large-scale spatiotemporal pat-
terns of activity in the frequency range of 30-70 Hz have
been found in the olfactory system, the visual cortex, and
other brain areas [6-9].

Temporally modulated neuronal responses to oriented
stimuli have been observed in the cat visual cortex. Local
groups of neurons responding to a common stimulus

display synchronized activity. Neurons responding to
separate stimuli are also phase locked, even when the dis-

tance between them is large, provided their stimuli have

similar features (e.g. , similar orientation and direction of
motion) [6,7]. It has been suggested that the selective

synchronization of neural activity serves as a mechanism
of binding spatially distributed features into a coherent
object [6, 10].

The observed synchronization of neural activity and its

proposed function raise several important issues. The
synchronized neurons have different levels of responses,
depending on, e.g. , their preferred orientation (PO) (i.e. .
the stimulus orientation that elicits the maximal response
of the neuron) or stimulus velocity. These diA'erences

presumably serve to encode the local features of the
external stimulus. It is thus important to investigate
mechanisms that are capable of synchronizing activity in

spatially inhomogeneous neural systems, without destroy-

ing the response properties of individual neurons. Sec-
ond, one needs to understand how the properties of the
external stimuli can modulate rapidly the pattern and de-

gree of synchronization across the system.
Models of oscillatory neural networks with phase-

locked activity capable of feature linking have been stud-

ied recently [11—14]. In these models synchronization of
the oscillations is mediated by (mostly excitatory) long-

Y; =c..—dA; —V;,

Z; =r(.s(X, —xo) —Z;]

(2)

range connections. Desynchronization of weakly coupled
neurons is achieved by local noise.

Both the experimental results and the suggested rele-
vance of synchronization to global operations, such as ob-
ject segmentation, imply that there is an eScient mecha-
nism for rapid desynchronization of the relative te~;—.poral
phase of large internally synchronized groups of neurons.
However, systems of noisy oscillators are incapable of
generating such a large-scale rapid and reversible desyn-
chronization. This is because the amplitude of the
effective noise that acts on the phase of an internally syn-
chronized group of say lV oscillators is only 6/J!V, where
6 is its local amplitude, and thus is neg1igible for large A'.

Consequently, even weak coupling between two large as-
semblies of oscillators will eventually synchronize them.
More importantly, even when such assemblies are not in-

teracting at all, the time taken to desynchronize the ini-
tial relative phase between them is extremely long, i.e. , of
O(lV/8-). To overcome this problem within the context
of oscillatory networks one has to introduce an ad hoc
spatially correlated noise [13,14].

In this Letter we study a chaotic neural network model
that exhibits synchronization at large spatial scales,
modulated by the distributed features of the extern ~1

stimulus. The advantage of chaos over external noise is

the fact. that the spatial correlations of the deterministic
noise are not fixed but depend on the dynamic state of the
system. As a consequence, the external stimulus can
modulate the spatial scale of the dynamic noise. In par-
ticular, depending on the pattern of the input the system
can break into large weakly coupled clusters, each exhib-
iting a globally chaotic activity. The chaotic fluctuations
rapidly desynchronize the relative phases of the different
clusters.

%e study a network of coupled Hindmarsk-Rose neu-
rons [15] described by the following equations:

X; = I'; —aX +bX; —Z;+I; + g JiS; (t),
j=]
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Each neuron is characterized by three time-dependent
variables: the membrane potential L;, the recovery vari-
able Y;, and a slow adaptation current Z;. The external
inputs are given by I;. The effect of the firing activity of
the jth neuron on the ith neuron is modeled in Eq. (1) by
an impulse current to the ith neuron, proportional to the
synaptic strength J;j, generated when the jth neuron is
active Th. e activity of a neuron is denoted by the (O, l)
variable S; (t) —=e(X~(t) —x*), where x* is some thresh-
old potential taken here to be 0, and 8 is the Heaviside
step function. The Hindmarsh-Rose single neuron model
and its extensions exhibit a dynamical behavior similar in

several aspects to the properties of real neurons [15-17].
For su%ciently low values of I the neuron is in a stable

quiescent state with L=xo &0. As I increases there is a
bifurcation to a low-frequency repetitive/ring state con-
sisting of a train of regularly spaced spikes. Further in-

crease in I leads to a sequence of bifurcations through
bursting states consisting of periodic bursts of two or
more spikes per burst. The long time scale associated
with the burst is provided by the time constant of the
adaptation current, Z, i.e., I/r, which is assumed to be
small, of O(10 ). For large values of I the system is in

a high-frequency repetitive firing state. For intermediate
values of r and I there is also a chaotic state of irregular
bursts [17]. For concreteness we will fix the parameters
to the values a =1.0, b=3.0, c=1.0, d=5.0, s =4.0,
xo = —1.6, and r =0.006, as in Ref. [17].

We first consider a network consisting of N neurons
with different values of I; coupled globally by excitatory
interactions, J;~ =J/N. The values of I; are uniformly
distributed between 1 and 5. The global nature of the
state of the network can be characterized by the mean
field, 1,„„(r)—=N 'g;-~SI(t), which is proportional to
the total synaptic current, and is thus the force mediating
the interactions between the neurons. Simulations of the
above network with 0 & J & 6.0 reveal three phases.

(i) Asynchronous stationary state For sma. l—l values
of the coupling J, I,-„„is constant in time, except for small
finite-size fiuctuations of the order 1/JN. The neurons
are not synchronized, and the whole effect of the interac-
tion is to shift the value of the local current acting on
them by a constant and spatially uniform amount I yp.

The time-averaged firing rates I;=(S;(r)) are displayed
in Fig. 1 against the local external currents I;. It exhibits
a series of discontinuities marking the boundaries be-
tween different firing states. An example of two neurons,
with periodic bursts of two and three spikes respectively,
is shown in Fig. 2(a). The bursts of the two neurons are
not phase locked, and have slightly different frequencies.
For the parameters given above this globally stationary
phase exists for 0 ~J ~0.8.

(ii) Synchronized oseillations. —For intermediate cou-
pling strength, in our case for 0.8 ~J~3.5, 1,„„(r) is
periodic in t except for small finite-size noise, and the ac-
tivity of most of the neurons is phase locked to this
periodic driving force. The local activities may also have
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FIG. l. The time-averaged firing rates plotted against the lo-
cal external inputs. The continuous line is for J=0.5. The pla-
teau at 0 corresponds to neurons in a quiescent state. The next
plateaus correspond to periodically bursting neurons with 1, 2,
3, and 4 spikes per burst, respectively. The nonsmooth regime
corresponds to chaotic neurons. The last, linear part corre-
sponds to repetitively firing neurons. The dashed line is for
J =5.0. Results from simulations of Eqs. (1)-(3)with iV =800.
For parameters see text. Inset: The power spectrum of I,,„, for
J =5.0 (in arbitrary units).

an aperiodic component which, ho~ever, is not synchron-
ized across the system, and therefore contributes only a
small finite-size noisy component to 1(t).

(iii) Synchronized chaos When .—the coupling is
strong, 3.5&J, all the active neurons are chaotic and
furthermore their chaotic fluctuations are spatially corre-
lated. An example is shown in Fig. 2(b) where the syn-
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FIG. 2. Membrane potentials of single neurons. Network
the same as in Fig. I. (a) J=0.5. Upper trace for neurons with

I;=1.75; lower trace for I;=2.25. (b) The same neurons but
with J=5.0. Vertical scale of second neurons was shifted
downwards by 1.4. The tips of the spikes were clipped.
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chronized chaotic bursts of the same pair of neutrons as
in Fig. 2(a) are clearly seen. In this phase the neural ac-
tivity no longer consists of bursts with fixed numbers of
spikes, yielding a smooth monotonic dependence of the
average rate I (I;) as shown in Fig. 1. The synchronized
chaotic activity results in a mean field that displays sub-
stantial chaotic fluctuations, as indicated by its power
spectrum, Fig. 1 (inset). Studying sizes JV (6000 we

have checked that the amplitude of the chaotic fluctua-
tions in l,„„(r) remains constant for large JY, in this re-
gime of J.

To investigate the role of synchronized chaos in the
processing of sensory information we need to consider
more structured networks. A neuron is labeled by (r, H).
where r represents its spatial location in the network,
which maps also to a location in the external sensory
space. The coordinate O represents a feature coordinate,
e.g. , the preferred orientation PO of the neuron. The in-

teraction between neurons has a long spatial range, rela-
tive to the distance between nearby neurons, and is

nonzero only for pairs of neurons with O=O'. The exter-
nal sensory input is characterized by a feature density
Ho(r) which varies slowly with r, except at lines of discon-
tinuities representing boundaries between different "ob-
jects." At the vicinity of a site r only neurons with

8=HO(r) are vigorously excited. Under a suitable choice
of network parameters, the active neurons in regions
where Ho(r) varies smoothly will be synchronized through
their interactions. On the other hand, since only neurons
with similar O are coupled, the lines of discontinuity in

Ho(r) will break the desynchronization, thus leading to
the formation of weakly interacting synchronized clusters
whose boundaries separate between objects. The weakly
interacting clusters will be rapidly desynchronized by the
global chaotic noise of each cluster.

To demonstrate the operation of such a network, we

consider two clusters, each comprising 1V neurons re-

sponding to a common oriented stimulus [13]. The neu-

rons in each cluster are labeled by their PO, O, distribut-
ed uniformly between —z/2 and +n/2. Neurons in the
same cluster interact with a constant coupling,

J;» =W 'J;„&„.„, J;„&„.„=21.0, if the difference in their PO
is less than ~/4 and zero otherwise. The interaction be-
tween neurons belonging to different clusters is J;» =J;„t„„,
J;„&,, =1.5, if they have similar PO; otherwise it is zero.
A stimulus with an orientation Oo is modeled as a local in-

put given by 1(!Ho—H(!), where 1(!H!) varies linearly
from a minimal value at !H! =x/2, 1(x/2) = —10.0, to a
maximal value at 0, l(0) =3.4.

This system of two interacting clusters has been simu-
lated with A'=160. %hen the intracluster interaction
J;„t„„.is varied, we find that each cluster displays the same
three phases as the fully connected system described
above. In particular for values of J;„t„„.» 15 the clusters
are in a synchronized chaotic state. Thus for the chosen
value J;„t„,, =21.0 the clusters are well within their syn-
chronized chaotic state. The time-averaged firing rate of
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is shown for the case of OO=OO and for Oo
—O(']=0.28m.

The dependence of the strength of the correlations on

Oo Oo is shown in the inset.
As stated above, a major advantage of the chaotic dy-

namics is in the speed by which synchronization or
desynchronization is achieved. The time for synchroniza-
tion of interacting clusters is roughly proportional to
J;„&,', Indeed we find that synchronization between clus-
ters with Oo= Oo occurs within a few time units.
Desynchronization of noninteracting clusters (from an in-

itial synchronized state) occurs rapidly by virtue of the
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FIG. 3. Time dependence of the correlations of two clusters

for the case of similar stimuli 00=00 {upper) and dissimilar

ones 00 —0() =0.28m {lower). I.or clarity the vertical scale of the

lower case has been shifted downward by 5. Parameters are

given in text. Inset: The strength of the correlation between

the two clusters vs the angular difference between their stimuli.

The vertical axis is the equal-time correlation, C{0),normalized

by the geometric mean of the variances of the mean fields of the

two clusters.

the neurons within each cluster is maximal at O=OO and
drops linearly with !H —Ho!. The firing rate vanishes for

! H —
Ho! ~ 0.35m. Note that despite the presence of strong

intracluster interactions the dispersion of activity levels is

strong.
I n spite of the intercluster interactions, the above

dynamical properties of each cluster are largely insensi-
tive to the orientation of the stimulus of the other cluster.
However, the intercluster interactions are strong enough
to synchronize them. This synchronization depends on

!Ho
—

Ho!, where Ho and Ho denote the orientations of the
stimuli acting on the two clusters, respectively. Because
the intercluster coupling exists only between neurons with
similar PO the synchronization of the two clusters strong-
ly decreases with ! Ho

—
Ho! and vanishes for !Ho

—
H~~!

~0.3z. This is clearly demonstrated in Fig. 3 where the
time-dependent correlation of the mean fields of the two
clusters,
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exponential growth of a perturbation of the initial states
of the chaotic clusters, the rate of which is measured by
the Lyapunov exponent, A, . Hence the dephasing time
will be roughly A, '. In the present model we find nurner-
ically that the clusters are completely desynchronized
within 3-5 bursts of activity.

ln conclusion, we would like to point out that the main
mechanism for generating the synchronized chaotic state
in our model network is the long-range positive interac-
tions in a population of neurons with a distribution of lo-
cal driving currents. Our results hold even for values of
the parameter r of Eq. (3) such that a single neuron does
not show a chaotic behavior for any value of I. We also
note that unlike the models of Refs. [3-5], the interaction
in our model is not diffusive but is similar to an impulse
force, which is more appropriate for approximating the
effect of chemical synaptic couplings.

Finally, the existence and possible functional role of
chaos in brain activity have been previously discussed [9].
It is important to note that encoding information in the
actual temporal chaotic pattern of activity of a neural
system is probably not feasible as it is inherently unsta-
ble. Our proposal here is that representing information in

the statistical features of the chaotic state, in our case the
spatial patterns of coherence of a chaotic system, may be
a robust and efficient process.
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