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Crisis-Induced Intermittent Bursting in Reaction-Diff'usion Chemical Systems
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We report on numerical evidence for intermittent bursting phenomena in a one-dimensional reaction-
diffusion system that mimics spatiotemporal pattern formation in the Couette flow reactor. This burst-

ing regime is attained via an interior crisis when decreasing the diffusion coefficient. The intermittent
occurrence of spatially localized structures can be understood in terms of Shil nikov's homoclinic chaos.
This diffusion-induced chaotic bursting is likely to be observed in bench experiments.

PACS numbers: 82.20.Wt, 05.45.+b, 05.70.Ln

In recent years there has been a rebirth of interest in

pattern-forming phenomena in chemically reacting and
diffusing systems [I]. This interest has been mainly
sparked by the technical development of open spatial
reactors [2]. Among them, the Couette flow reactor [3,4]
plays a privileged role since it provides a practical im-

plementation of an effectively one-dimensional reaction-
diffusion system with (i) well-defined boundary condi-
tions, the fresh chemicals are fed at the two boundaries of
the Couette reactor, and (ii) controlled turbulent diffu-
sion process, the effective diffusion coefficient D is a tun-
able parameter that depends mainly on the rotation rate
of the inner cylinder. The Couette flow reactor is re-
markably well adapted to investigate the formation of
sustained front patterns [4,5]. When considering a bi-

stable chemical reaction, e.g. , some variant of the
chlorite-iodide reaction, stationary nonhomogeneous spa-
tial patterns are easily obtained by imposing a concentra-
tion gradient from the boundaries. These spatial patterns
are made of rather homogeneous regions corresponding to
reduced or oxidized states, separated by sharp transition
fronts caused by a fast switching process in the kinetics of
the reaction. As documented in Ref. [5], when varying
the chemical input concentrations or the transport rate D,
these steady patterns usually destabilize into time-
dependent states where the position of the fronts oscil-
lates periodically in the Couette reactor. Thus far, no

definite experimental evidence for chaotic spatiotemporal
behavior has been obtained.

In a previous work [6] we have shown that the reported
spatiotemporal patterns in the Couette flow reactor are
characteristic of a wide class of reaction-diffusion sys-
tems. But our approach was mainly focused on the ex-
istence and stability of multifront patterns. The purpose
of this Letter is to push this study further into the non-

linear regime. We elaborate on a very spectacular inter-
mittent bursting phenomenon that is likely to be observed
experimentally. More precisely, we elucidate a mecha-
nism for the periodic and nonperiodic appearance of spa-
tially localized bursts of reduced state in an oxidized
medium imposed from the boundaries.

The reaction-diffusion system we will consider is a for-
mal model that does not claim to describe faithful1y the

experimental situation encountered in the Couette flow
reactor. It does not completely meet the experimental
conditions and the requirements of chemical kinetics
laws. However, it does retain the minimal ingredients
necessary to reproduce most of the phenomena associated
with the observed front patterns in the chlorite-iodide re-
action [4-6]. This one-dimensional model reads

elu t) u=D + e ' [v —f(u)],
8r

8v r) v=D —u+a, x e [O, l].
Bt

The reaction term is a two-variable Van der Pol-like
equation, which mimics the excitable character of the
chemical reaction used in the experiments. This reaction
term ensures the existence of an "S shaped" slow mani-
fold v=f(u) =u +u, consisting of three branches.
Two of them attract the trajectories in a time -e and ac-
count for the two families of reduced (upper branch) and
oxidized (lower branch) steady states. The only steady
state of the reaction term [u, =a, v, = f (a)] is necessarily
located on the slow inanifold; it is unstable on the middle
branch, the pleats of the slow manifold corresponding to
supercritical Hopf bifurcations leading to oscillatory dy-
namics [7]. The diffusion term is given by a Fick law; the
cross-diffusion terms are neglected and the diffusion
coefficients are equal (D„=D,, =D), in order to mimic
the turbulent mass transport in the Couette reactor. In
agreement with the experimental observations [4,5], we
consider Dirichlet boundary conditions: The system is
fed symmetrically in an oxidized (lower branch) state,
v(x=O) =f(u(x=O)) =v(x= 1 ) =f(u(x= 1)). For the
sake of simplicity, a in Eq. (1) is set on the upper branch
of the slow manifold, so that when switching oA the diflu-
sion process, all the intermediate cell points evolve
asymptotically to the same reduced steady state [8].

The partial-difl'erential equations (I ) are solved numer-
ically [6] through finite-difference approximation for the
spatial derivatives and the method of line for time ad-
vancement. The model medium is represented by a
discretized line with a resolution from 50 up to 200
points, i.e., of the same order of magnitude as the number
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FIG. l. Spatiotemporal pattern-forming phenomena in the
reaction-diffusion system (I) for the model parameters u(x
=0) =u(x=l) = —2, a=0.0l, a=0.01, and the slow manifold
f(u) =u +u 3. (a) D =0 0322560, C$ oscillating pattern
confined to the lower branch; (b) D=0.0322550, C, crisis-
induced intermittent bursting; (c) D=0.0322307, CI"'l homo-
clinic intermittent bursting; and (d) D =0.0322400, P~ period-
ic bursting. x C [0.3,0.7]; t C [0,401 in (a), (b), and (c);
r E [0,20l in (d).

S S

Time
IFIG. 2. Time series recorded at the central point x= 2.

(a)-(d) correspond respectively to the spatiotemporal patterns
shown in Fig. l.

of pairs of vortices (-50-100) in the Couette reactor.
The resulting set of ordinary differential equations
(ODEs) is integrated with a stiff ODE solver [6]. The
following set of model parameters is considered: a=0.01,
u(x=0) =u(x=1) = —2 (lower branch), a=0.01
(upper branch), whereas D is taken as a control parame-
ter. Even though there is no asymmetry in the feeding,
there exists a concentration gradient close to the two
boundaries. For D»e, the diffusion term drives all
the trajectories of the system towards a quasihomogene-
ous solution imposed from the boundaries: All the reac-
tor cells are constrained to the lower branch. When D is
decreased, this flat concentration profile transforms con-
tinuously into a two-front pattern: Two fronts separate a
central region of reduced states (upper branch) from the
two regions of oxidized states (lower branch) close to the
two boundaries. The appearance of these two-front solu-
tions is actually governed by a cusp instability. Accord-
ing to the chosen one-parameter path, the transition to
the two-front profile solution can be either continuous (as
considered in this paper) or discontinuous with hysteresis
[6(b)]. Note that the experimental observation of spatial
bistability between a quasiuniform state and a double-
front state has been reported in Ref. [51.

When following our numerical path, D being de-
creased, the diffusion process carries less and less further
the influence of the boundaries and a concentration gra-
dient progressively settles in the system. The spatial
profile of the variable u(x) is no longer flat but it in-

creases gradually from the edges to the center of the sys-
tem. For some critical value of D, this symmetric pattern
becomes unstable via a supercritical Hopf bifurcation
[6(b)]. Among the one-dimensional array of coupled ele-
mentary reactor cells, the ones located at the center are
no longer stabilized by the stable steady-state cells locat-
ed close to the boundaries and the whole system starts os-
cillating periodically. When further decreasing D, this
periodically oscillating nonhomogeneous state undergoes
a cascade of period-doubling bifurcations leading to a
chaotically oscillating pattern. The time evolution of the
u variable spatial profile in the central part of the system
is illustrated in Fig. 1(a). In Fig. 2(a) the time series
recorded at x= —,

'
corresponds to nonperiodic small-

amplitude oscillations on the lower branch of the slow
manifold. According to the nomenclature used in Ref.
[9], we will label this chaotic state CL where the sub-
script and superscript denote, respectively, the number of
large relaxational and small-amplitude oscillations in a
basic motif of the time series. A two-dimensional projec-
tion of the phase portrait as reconstructed from the tem-
poral evolution of the variables u and v recorded at an in-
termediate spatial cell point is shown in Fig. 3(a). The
corresponding Poincare map and 1D map obtained when
using a (hyper)plane that intersects transversally all the
trajectories are illustrated in Figs. 3(d) and 4(a). The
fact that the Poincare map is not a scatter of points but
that all the points lie to a good approximation along a
smooth curve indicates that the trajectories lie on a multi-
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FIG. 3. (a)-(c) Two-dimensional projections of the phase
portraits of the chaotic states Co, C„and Cl"', respectively.
The corresponding first return maps obtained with the Poincare
(hyper)plane u(x= —,

' ) = —0.55 are shown in (d); the three

maps have been arbitrarily shifted for comparison.

FIG. 4. (a)-(c) ID maps of the chaotic states Ca C„and
CI"', extracted from the Poincare maps in Fig. 3(d). The mul-

tibranched ID map of CI"' in (d) is obtained when considering
a Poincare (hyper)plane lu(x=

& ) =Ol which intersects only

the trajectories involved in the reinjection process.

folded two-dimensional sheet in the phase space. The
single-humped shape of the ID map is the signature of
low-dimensional deterministic chaos issued from a cas-
cade of period-doubling bifurcations [10].

When D is decreased through a critical value D„a
qualitative change is observed in the spatiotemporal evo-
lution of the system as shown in Fig. 1(b). Sudden bursts
of reduced states appear in an apparently erratic manner
in the system. This intermittent appearance of a spatially
localized two-front profile becomes more and more fre-
quent when D is further lowered. As seen in the time
series in Fig. 2(b), the dynamics at the central cell points
is no longer confined to the lower branch of the slow man-

ifold, and the chaotic regime Co is interrupted once in a
while by a large-amplitude relaxation oscillation corre-
sponding to a very short visit to the upper branch. When
comparing the phase portrait of this new regime C, [Fig.
3(b)] with the one of Co [Fig. 3(a)l, one observes a sud-

den increase of the phase-space extent of the attractor.
The term interior crisis [11] has been coined to describe
this "explosion" of a strange attractor that occurs when it
collides with an unstable coexisting periodic orbit or its
stable manifold. The Poincare map in Fig. 3(d) clearly
shows that the attractor C0 is still embodied in C, . The
crisis mechanism is definitely elucidated when looking at
the corresponding 1D maps: (i) Before the crisis all

points of the map iterate within the invariant square
sketched in Fig. 4(a); (ii) after the crisis some points fall
outside this square and will escape this region [Fig. 4(b)l.
The 1D map of C„displays an additional large hump cor-
responding to the bursts, which ensures the return of the

trajectories to the former chaotic region. Critical behav-
ior near the interior crisis is generally characterized by
the average time between bursts [11] which is predicted
to scale as (T)- lD —D, i

", where the exponent y= —,
' is

obtained in the limit of infinitely area contracting Poin-
care maps (single-valued quadratic 1D map). In our sys-
tem, due to finite dissipation rate and to the multivalua-
tion of the 1D map in Fig. 4(b), a deviation from this
value is expected [1 ll. We have checked that the proba-
bility distribution of times T between bursts decreases ex-
ponentially for large T. But, because computation time
becomes prohibitively long in the vicinity of the crisis
threshold, we have not been able to estimate accurately
the value of y. Very few clear experimental observations
of crisis have been published thus far; a very convincing
identification has been reported in the study of the
Belousov-Zhabotinskii reaction in well-mixed media [9].
To our knowledge, the intermittent bursting phenomenon
reported here is the first observation of a crisis in

reaction-diA'usion systems. This crisis-induced intermit-
tency leading to macroscopic chaos is very likely to be ob-
served experimentally in the Couette flow reactor.

When further decreasing D, the dynamics of the sys-
tem ultimately loses the memory of the chaotic state Co,
and one witnesses an alternating sequence of chaotic
(Ci ) and periodic (PP) bursting patterns. In Fig.
1 (c), we show the chaotic-bursting regime Ci that im-

mediately follows C,. When comparing the time series in

Figs. 2(a), 2(b), and 2(c), respectively, C, appears as a
mixture of Co and Cl"'. This is corroborated by the 1D
map of C, [Fig. 4(b)1 which looks like the superposition
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of the small unimodal map of Cn [Fig. 4(a)] with the

large hump with a flat tail of C~ [Fig. 4(c)]. A careful
examination of the time series in Fig. 2(c) shows that its

basic motif is made of a large-amplitude relaxation oscil-
lation and m' small-amplitude quasiharmonic oscillations,
where trt' belongs to the finite set [rn] T. his basic motif is

characteristic of the chaotic dynamics that exists in the
neighborhood of a "spiraling out" homoclinic orbit of
Shil'nikov type [12]. This interpretation is strengthened

by the multibranched structure of the 1D map [Fig. 4(d)]
obtained when considering a Poincare plane which only
intersects the large-amplitude relaxation oscillations
ensuring the reinjection process. This 1D map is striking-

ly similar to the theoretical 1D map predicted for
"spiral-type" attractors in nearly homoclinic conditions
[12]. Each branch of this 1D map corresponds to a num-

ber of small-amplitude oscillations in between two bursts.
The intermittent bursting in Fig. 1(c) is thus governed by
a deterministic iteration scheme that satisfies the symbol-
ic dynamics of Shil'nikov homoclinic chaos. Theoretical-
ly a double cascade of saddle-node (originating PP) and
subharmonic (leading to C~ «) bifurcations should accu-
mulate at the locus of homoclinicity [12,13]. The bend-

ing at the top of each branch of the 1D map in Fig. 4(d)
suggests the existence of some folding effect in the rein-

jection mechanism [12]. In this case, cusp bifurcations
with bistability and hysteresis phenomena exist locally
near the onset of homoclinicity [13(b)]. This feature is

likely to explain the concurrency between periodic and
chaotic bursting patterns observed along our one-
parameter path. A periodic bursting pattern P~ is shown

in Fig. 1(d). Let us mention that, nearby in the parame-
ter space, bursting patterns with up to m =7 small-

amplitude oscillations in between two successive bursts
can be attained. For lower values of D, this sequence of
periodic (P™~)and intermittent (CI ) bursting patterns,
with m decreasing progressively, ends on a periodically
oscillating two-front pattern (P~ ) which ultimately stabi-
lizes in a stationary two-front pattern. This succession of
periodic and chaotic bursting patterns is the counterpart
of the alternating sequences of periodic and chaotic
oscillations that exhibits the Belousov-Zhabotinskii reac-
tion when conducted in a well-mixed medium [9,12,14].
The so-called chemical chaos and its homoclinic nature
was shown to arise from the nonlinear complexity of the
chemical kinetics [12,14]. The remarkable feature of the
homoclinic intermittent bursting described in this paper is
that it results from the interaction of the diffusion process
with a chemical reaction, which itself would proceed in a
stationary manner if diffusion were negligible. In a forth-
coming publication we hope to demonstrate the existence
of a Shil'nikov homoclinic orbit using nonlinear Galerkin
projection techniques [15].

This work was supported by the Direction des Re-
cherches Etudes et Techniques under Contract No.
89/196. J.E. was also supported by the U.S. Army

Research Office through the MSI of Cornell University.

"' Present address: Center for Applied Mathematics, 306
Sage Hall, Cornell University, Ithaca, NY 14853.

[I] Waves and Patterns in Chemical and Biologica! Media
edited by H. L. Swinney and V. I. Krinski [Physica (Am-
sterdam) 49D (1991)].

[2] J. Boissonade, in Dynamic and Stochastic Processes
Theory and Applications, edited by R. Lima, L. Streit,
and R. Vilela-Mendes, Lecture Notes in Physics Vol. 355
(Springer-Verlag, Berlin, 1990), p. 76.

[3] W. Y. Tam, J. A. Vastano, H. L. Swinney, and W.
Horsthemke, Phys. Rev. Lett. 61, 2163 (1988); W. Y.
Tam and H. L. Swinney, Physica (Amsterdam) 46D, 10
(1990).

[4] Q. Ouyang, J. Boissonade, J. C. Roux, and P. De Kepper,
Phys. Lett. A 134, 282 (1989); J. Boissonade, Q. Ouyang,
A. Arneodo, J. Elezgaray, J. C. Roux, and P. De Kepper,
in Nonlinear Waves in Processes in Excitable Media,
edited by A. V. Holden, M. Markus, and H. G. Othmer
(Plenum, New York, 1991),p. 47.

[5] Q. Ouyang, V. Castets, J. Boissonade, J. C. Roux, P. De
Kepper, and H. L. Swinney, J. Chem. Phys. 95, 351
(1991).

[6] (a) A. Arneodo and J. Elezgaray, Phys. Lett. A 143, 25
(1990); (b) J. Elezgaray and A. Arneodo, J. Chem. Phys.
95, 323 (1991).

[7] According to the specific shape f(u) of the slow manifold,
the Hopf bifurcation can be either supercritical or sub-
critical. See W. Eckhaus, in Asymptotic Analysis II,
edited by F. Verhulst, Lecture Notes in Mathematics Vol.
985 (Springer, Berlin, 1983), p. 449.

[8] A more realistic model should take into account a spatial
dependence of the parameter a, with a(x 0) =a(x I)
=u(x 0) u(x I ), but the effective implementation of
this spatial constraint does not have much meaning in this
formal approach since it should strongly depend on the
specific kinetics of the reaction, as debated in Ref. [6(b)].

[9] P. Richetti, P. De Kepper, J. C. Roux, and H. L. Swin-
ney, J. Stat. Phys. 4$, 977 (1987).

[10] P. Collet and J. P. Eckmann, iterated Maps of the Inter
cal as Dynamical Systems (Birkhaiiser, Boston, 1980).

[I I] C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 4$,
1507 (1982); Physica (Amsterdam) 7D, 181 (1983);
Phys. Rev. Lett. 57, 1284 (1986); C. Grebogi, E. Ott, F.
Romeiras, and J. A. Yorke, Phys. Rev. A 36, 5365
(1987).

[12] F. Argoul, A. Arneodo, and P. Richetti, Phys. Lett. A
120, 269 (1987); in A Chaotic Hierarchy. edited by G.
Baier and M. Klein (World Scientific, Singapore, 1991),
p. 79.

[13] (a) P. A. Glendenning and C. Sparrow, J. Stat. Phys. 35,
645 (1983); (b) P. Gaspard, R. Kapral, and G. Nicolis, J.
Stat. Phys. 35, 697 (1984).

[14] F. Argoul, A. Arneodo, P. Richetti, J. C. Roux, and H. L.
Swinney, Account Chem. Res. 20, 436 (1987).

[15] M. Marion and R. Teman, SIAM J. Numer. Anal. 26,
1139 (1989).

717


