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Monte Carlo Simulation of Flux Lattice Melting in a Model High-T, Superconductor
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We studied Aux lattice melting in a model high-T, superconductor by Monte Carlo simulation in

terms of vortex variables. We identify two melting curves in the B-T phase diagram and evaluate a

density-dependent Lindemann criterion number for melting. We also observe that the transition temper-
ature shifts downward toward the two-dimensional melting limit as the density of Aux lines increases.
Although the transition temperature does not change, a significant diAerence in shear modulus is ob-
served when Aux cutting or reconnection is allowed.
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In the high-temperature superconductors (HTSC), due
to strong anisotropy and the high transition temperature,
thermal fluctuations of the vortices induced by an applied
magnetic field are believed to play an important role in

most of the H-T plane [I]. The cuprates are all strongly
type-11 materials (tv= IOO) with high anisotropy (efl'ec-
tive-mass ratio as large as 100) and very short coherence
lengths [typically g,b(0) =10 A]. Thus, instead of form-
ing a rigid Abrikosov lattice, each flux line is expected to
have considerable lateral fluctuations normal to the direc-
tion of applied magnetic field. The possibility of the
melting of the flux lattice in two-dimensional supercon-
ducting thin films was first pointed out by Huberman and
Doniach [2] and later by Fisher [31 based on the dis-
location-mediated melting theory [4]. Melting of the 3D
flux lattice in HTSC belongs to a different universality
class and it may show a crossover from the 3D behavior
to the quasi-2D behavior as one varies the areal density of
the system.

Because of the complexities of the problem, it is highly
desirable to study a simple yet plausible model system
through both experiments [5] and computer simulations

to shed light on the essentials of the problem. Among the
issues yet to be fully understood are the relevance of the
melted flux liquid [1] and the vortex glass [6,7], the im-

portance of flux cutting and reconnection [8] in the con-
text of the disentangled and entangled liquid regimes, and
efkcts of the "quasi-two-dimensionality" and the weak
interlayer coupling on the melting transition [9]. All of'

these may be eA'ectively studied in a well-controlled simu-
lation. Recently, Xing and Tesanovic [10] did a varia-
tional Monte Carlo (MC) simulation of the analogous
boson system and observed a melting transition for the
Y-Ba-Cu-0 system very close to the 8,. [ line, while I i

and Teitel [11] studied the anisotropic frustrated 3D XV
model and analyzed the helicity moduli and some eAects
of the vortex cutting. In this Letter, we present the first
MC simulation of the flux-line system over a wide range
of the phase diagram with a realistic interaction which
can be directly related to real materials. We show results
that address most of the questions raised above.

A reasonable starting point is to take the Lawrence-
Doniach (LD) model of stacked superconducting layers
[12] with a free energy given by
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In a fixed external field H„~ one needs to consider the
Gibbs free energy QLD=PLo —(I/4tr) Jd x B H,„,. We
consider a stack of superconducting layers each of thick-
ness d, interlayer spacing a, and dimensionless interlayer
coupling strength g. From now on, we concentrate on the
case where the field is applied perpendicular to the
planes. We model the thermodynamics of Eq. (1) in

terms of a vortex representation. The position vector of a
segment of the ith vortex line in the zth plane is denoted
by R; -. The mean distance between neighboring vortices
is ao. A pair of segments of a single flux line interact
with each other via the magnetic interaction (Id rj. A)
and the Josephson coupling (the "g-coupling term") be-
tween successive layers. They are both quadratic for a

small separation of vortices in adjacent layers (IR;-
—R;,:+tl «k). The Josephson coupling can be shown to
be larger than the other by a factor -gx (a/d) —10 for
BiqSr2Ca~Cu20s [13]. For large separation, the magnetic
coupling grows logarithmically and is again negligible
compared to the linear eff'ect of the Josephson coupling
[14]. It can also be shown that the interaction of a flux

line with the external field can be neglected [15]. The
Josephson coupling leads to the interaction of a pair of
displaced segments,

Q 2g
d 2p[1 —cos(p —p-+ ~ )], (2)
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FIG. 1. 8 vs T phase diagram for B =12.5 6 to 50 T. Two curves from the simulations are shown. The lower-temperature curve
(open squares) represents the points where the translational order parameter drops to zero The. other curve (solid triangles) is for
the bond-angle order parameter. The results from elastic continuum theory [22] are also shown (dashed line) for comparison. Some
typical configurations are displayed. Note that each box carries its size in units of X, and a, the interlayer spacing. The apparent as-
pect ratio is not exact. Inset: The very-low-density region.

where p. is the phase of the condensate order parameter
at zth plane. For (R;, —R;,+~( much smaller than a
length scale defined by rg =(,b/Jg, the interaction can be
shown to be approximately quadratic in the separation of
the cores while for a larger separation, minimization of
the LD free energy for a pair of layers leads to [81

—(rsV@( +sin@ 0, (3)

gp 2 IR"+'I'
[I + In (1t/a )]

8x X 4rg
—1, otherwise,

where R;. =+' =(R;.- —R;,-+~(. For the in-plane interac-
tion, a logarithmic potential is appropriate for the ex-
treme limit of 2D planar vortices [17] while a Kn(r/X, )
potential is more suited for a 3D flux-line system [I]. For
our system of finite size, we use the latter form and will

justify its use in the discussion:

hF;55 p)g55e(R; z Rj -) = Kp
8n k

(5)

Thus we approximate the full 3D interaction [18] with an
effective 2D interaction restricted to the same plane and

where @(x)—=p, + ~ (x) —p, (x). A more elaborate treat-
ment gives a sine-Bessel-type equation [16] similar to Eq.
(3) which has a nontrivial sine-Gordon kink solution
leading to a "string" of vortex with the core running be-
tween the planes providing the necessary phase healing by
2z over a length scale given by rg. For separation of the
vortices beyond 2rg, an interplanar core will start to form
with energy proportional to the distance. Thus, the inter-
planar Josephson coupling between two-dimensional vor-
tices may be written in the following way:

zip
2

[I+In(A/a)] —2, for (R +'( & 2rs,
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(4)

the short-ranged 3osephson interlayer coupling.
In performing the Monte Carlo simulation, we followed

the usual Metropolis algorithm on a system of 64 (or 16)
flux lines confined to a 256 by 222 by 16 (or 32) grid
space. Each flux line (indices i,j ) may be viewed as a
collection of beads connected by a Aexible string, with
each bead confined to move in a plane (index z). In a
single Monte Carlo step, each bead makes a trial move-
ment by a unit grid. We used the boundary conditions
periodic in the x-y plane and free in the z direction.
Periodic boundary conditions with a long-range potential
also necessitate a proper treatment of the image potential,
~hose eA'ect we incorporate through the Ewald-sum tech-
nique [19]. Throughout the simulation, the areal density
of the system is fixed at a value determined by a selection
of the length scale corresponding to a grid unit. For ex-
ample, the choice of h,x aii, k 2000 A, gives a magnet-
ic field intensity of

(2.07x10 Gcm ) x2 0.1458 =neap=
(3a )' cm a

for vortices apart from the neighbors by 64 grid units.
We studied a model with parameters similar to the
Bi2Sr2Ca~Cu20s system for which there are interesting
experimental results available [20]. The other length-
related parameter, rs =g,b/Jg, is fixed by the choice of
values for g and g. Taking x=100 and Jg =,'0 as is
appropriate for Bi2SrqCa~Cu20s gives rg//t, x =0.5/a.
Therefore, we vary the effective density of the Aux lines
by varying the length-scaling factor a while keeping the
total number of the Aux lines and the number of grid cells
in the simulation fixed. The total number of vortices is
explicitly conserved throughout the simulation and no
creation of additional vortex pairs was allowed. Thus, it
is not the Gibbs free energy, O' LD but PLD that is mini-
mized in our simulation and the phase diagram (Fig. 1)
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represents B(H) vs T rather than H vs T as is usual in

experiments. The energy is scaled with dpo/8rr k =To,
where k = ko/(1 —T/T, )w. as used. Using the value of
1.2X10 A for X(0) /d, we have To=1000 K placing
our results in a reasonable range in the phase diagram.
While slowly warming up the system [21], we measured
the average of each component of the internal energy and

energy fluctuations. The mean-square deviation of each
particle position from its equilibrium position

(aR,„,~„. „,-=(lR; —R;"""
l
') "-')

was measured to evaluate the Lindemann number for
melting [22]. Another important quantity, especially for
a system with many layers, is the "end-to-end" distance
fluctuation

~ Rend-to-en d=(l Ri=l , Ri:=N- , I
') '"

The collective structure of the vortices was measured by
the three-dimensional density-density correlation function
and its Fourier transform variants along with the hexatic
order parameter

y„cx

where 8;, is the bond angle between the neighbors (i and

j) and z; is the coordination number for vortex i The.

pair correlation functions for the two types of order were
also measured. The procedure was repeated with and
without flux-line cutting.

To evaluate the reliability of the whole procedure, we

ran the program on a well-known problem with an ana-
lytic solution [23]. We get excellent agreement between
the simulation and the exact solution [24].

In Fig. 1, we show the bird' s-eye view of our result in

the form of a phase diagram. The temperature and the
length scales were chosen for the Bi2Sr2Ca]Cu20g system
and no cutting of the vortices was allo~ed. The system is
melted over most of the phase diagram, which spans five

decades in density. We identified two phase-transition
curves from our simulation. The lower temperature curve
was determined by observing the disappearance of the
in-plane translational order monitored by the peak of
S(q=o~) which is the in-plane Fourier transform of the
density-density correlation function at the first Bragg
point. It has a very sharp peak in the solid phase but it
decays and saturates in the liquid phase. We identify the
point where the saturation is reached at T . This point
also coincides with that at which the quantities
6R;„td.„„„(T)and 8R„„d„,„d(T) show sharp changes in

slope. The second curve is obtained from a similar
analysis of the hexatic order parameter y6. Details of the
analysis will be given elsewhere. The melting seems to
occur through two steps similar to what occurs in two-
dimensional melting. We took a thorough look at the
equilibrium configurations and found that the low-

temperature and high-field regime exhibits in-plane order
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FIG. 2. The Lindemann criterion number [=(6R;„„~.„,Jao)]
as a function of density (field intensity) was determined based

on the lower-temperature melting curve of Fig. l.

but the two-dimensional lattice planes wiggle as a whole.
Beyond the B =500 kG limit in the figure, the simulation
yields virtually independent-layer crystals asymptotically
approaching the 2D limit. Following Huberman and
Doniach [2], an upper limit for the melting temperature
of an individual layer can be set to be k&T„, ~ (1/
8zJ3)dgo/16rr )

'
which translates to ksT„, ~ 11.5 K in

our case. Given the fact that the renormalization of the
interaction pulls that limit down [3] to 5-9 K, our result
is in good agreement with the theoretical bounds. In the
low-field regime, the interlayer coupling is relatively
stronger than the in-plane correlations and the system
displays straighter flux lines, forming a very fragile lat-
tice. In the very-low-field limit, the melting temperature
shifts downward drastically giving rise to a reentrant be-
havior as shown in the inset of Fig. 1. This behavior is

expected since the vortices are so far apart from each oth-
er (k))ao) that the in-plane interaction is in the ex-
ponential limit. Since the flux lines are straight in the
very-low-field regime (lR; —R; +~l &A, &&ao), we be-
lieve that it is more appropriate to use the Ko potential to
take better account of the vortices being closer to the 3D
objects in the dilute regime. In that limit, the shielding
from different layers should be more eA'ective so that the
in-plane interaction can no longer be considered localized
in each layer.

The Lindemann constant (Fig. 2) as determined from
the simulation (bR;„~~„.„,/ao) gives a reasonable value of
about 0.2 but deviates in both the large-field and the
low-field limits. Since we have two diA'erent types of in-

teraction in the system which scale differently with length
(i.e., by changing density), it is reasonable to expect such
a behavior. It may also suggest that the nature of the
melting changes as one goes from the 2D-like high-
density (high-field) limit to the 3D-like low-density limit.
The calculation in the continuum-elastic theory had used
a somewhat larger value of 0.4 (dashed curve in Fig. 1)
[22].

We finally discuss the eA'ect of reconnection. Within



VOLUME 68, NUMBER 5 PHYSICAL REVIEW LETTERS 3 FEBRUARY 1992

1.2

1.0

0.8
R

0 6

0.4 p)
C)

0.2

0.0 0.5 1.0

T/T
1.5 2.0

FIG. 3. Effect of allowing cutting and reconnection for
B 20 kG. In-plane shear modulus, c66 was calculated from ten
equilibrium configurations for each temperature using the for-
mula derived in Ref. [25]. The reference value co was taken to
be c66evaluated at 2XT with cutting allowed. The right-hand
side shows bR&n-plane(T)lao which measures the in-plane fluctua-
tion of each vortex from equilibrium position.
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