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Analysis of NMR Data in the Superconducting State of YBazCu30'7
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We have extended a weak-coupling theory of antiferromagnetic fluctuations to the superconducting
state and analyzed NMR data for YBa2Cu30/. Within this framework we find that while an s-wave gap
structure with 26(0)/kT, =4 can fit the Knight-shift data for Cu(2) and O(2,3), it does not provide a
satisfactory fit to the Tl ' data. Using a d, . 2, , 2-wave gap with 26(0)/kT, of order 6 to g provides a

reasonable fit to both the Knight-shift and Tl ' data.

PACS numbers: 74.30.Gn

Measurements of the temperature dependence of the
Cu(2) and O(2, 3) nuclear relaxation rates in the normal
state of YBa~Cu307 have been successfully analyzed in

terms of a weak-coupling antiferromagnetic Fermi-liquid
theory [1,2]. Here we analyze a simple extension of this
approach to the superconducting state and compare re-
sults for the Cu(2) and O(2, 3) Knight shifts and nuclear
relaxation times obtained for both s-wave and d-wave

gaps [3]. Within this framework, we find for an s-wave

gap that the Knight-shift data can be fitted using a
2A(0)/kT, , ratio of order 4 but that the Ti ' results are
not well described. A d-wave gap with 25(0)/kT, of or-

der 6 to 8 provides a reasonable fit to both the Knight
shift and the T] ' data.

In Ref. [1], we modeled the normal-state susceptibility

by an RPA form

( )
Xo(q to)

gq, m
1
—Ugo(q, to)

with the irreducible susceptibility go(q, to) replaced by
the noninteracting tight-binding susceptibility and U tak-
en as an effective interaction strength [4]. A natural ex-
tension of this to the superconducting state [5] involves

approximating the irreducible susceptibility by the BCS
expression
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We will evaluate this expression for both an s-wave

gap I)p=it (T) and a d-wave gap Ap=[A(T)/2](cosp„
—cosp, , ). Here /3(T) will be assumed to have a BCS
temperature dependence [6] and 2A(0)/kT, will be treat-
ed as a parameter. Equation (2) contains the usual
coherence factors in the square brackets, and the disper-
sion relation Ep=(ap+hp) 'I with the tight-binding band
structure Bp

= —2t (cosp, +cosp„) —It and It the chemical
potential.

Using the Mila-Rice hyperfine form factors [7], the
Knight shifts Kg(T) for Cu(2) and O(2, 3) both vary as
the uniform spin susceptibility

BCS(p p)
~(0,0) = (3)

1
—Ugo (0,0)

Here

(4)

is the well-known Yosida result for a tight-binding band.

t
From Eq. (3) it follows that as T decreases below T,
and go (0,0) falls, Kq(T)/Ks(T, . ) is further reduced

by the decrease in the Stoner enhancement factor [1
—Ugo (0,0) ] '. Keeping the same parameters [8]
used in our previous work, the Stoner enhancement is of
order 1.7 at T=T, Results for Ks.(T)/Ks(T, ), obtained.
from Eqs. (2) and (3), for various 2/3. (0)/kT, ratios are.
shown in Figs. 1(a) and 1(b) for s and d-wave ga-ps, re-

spectively. For an s-wave gap, the best fit is obtained
with a gap ratio 2A(0)/kT, =4. This relatively small
~alue of 2', (0)/kT, can give the obs.erved rapid drop in

Ks (T)/K, q (T,. ) because of the additional suppression

arising from the Stoner factor. A larger value of
2/t, (0)/kTr, of order 6 to g, gives the best fit for a d-wave

gap. At low temperatures Ks(T) increases linearly with

T for a d-wave gap [9], while for an s-wave nodeless gap,
Ks(T) varies as exp[ —A(0)/T]. As seen in Fig. 1, the

experimental data appear to favor the s-wave low-

temperature behavior. However, it is important to note
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FIG. 1. Knight shift vs reduced temperature obtained from
Eq. (3) for various 2A(0)/kT, ratios with (a) an s-wave and (b)
a d-wave gap. The points represent experimental data of Bar-
rett et al. [15] on Cu(2) and Takigawa and co-workers [16,17]
on O(2, 3).

the error bars and to remember that the lowest-temper-
ature Cu(2) data point has been taken as the zero. In ad-
dition, it has been demonstrated [10] for Cu(2) that there
is a magnetic field dependence of the data so that the
low-field limit is required to obtain intrinsic behavior and
at present only 8-T data are available for O(2,3).

The nuclear relaxation times are given by

T g I~( )I p Imp(Q, QP)

N q CO

where IA(q)I is the appropriate Mila-Rice hyperfine
form factor [7]. We have evaluated this using Eqs. (1)
and (2) for the parameters previously used in analyzing
the normal state [8]. Results for the temperature depen-

FIG. 2. Temperature dependence of the nuclear relaxation
rates below T, for (a) Cu(2) with .H along the c axis and (b)
O(2, 3). The solid curve in this and the following figures is for a
d-wave gap, and the dotted and the dashed curves are for an s-
wave gap. The d-wave gap amplitude has been taken as
2A(0)/kT, =8, and the s-wave gap amplitude as 2h(0)/kT, =4
(dotted) and 8 (dashed). The quasiparticle damping rate has
been taken as I =T, (T/T, )'. The experimental data are from
Hammel et al. [18].

dence of (T~ '), . for Cu(2) with H along the c axis and
that for O(2, 3) are compared with experimental data
in Figs. 2(a) and 2(b). We have plotted results for
2l), (0)/kT, equal to both 4 a. nd 8 for an s-wave gap to
show that while a larger 26(0)jkT,. ratio reduces the
Hebel-Slichter peak, it does not appear to provide a satis-
factory fit to the data. For the d wave we have taken
2&(0)/kT;=8. In these calculations we have used a
broadening I reAecting a quasiparticle lifetime [11]

' =2kT, . at T=T,. and reduced this broadening by
(T/T, )as the temperature is .lowered. The exact form
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FIG. 3. Temperature dependence of the Cu(2) anisotropy
(Tl )ab/(Tl )c. The experimental data are from Martindale
et al. [IO] (squares) and Takigawa, Smith, and Hults [19]
(solid and open circles). The various curves have the same pa-

rameters as in Fig. 2.

HG. 4. Temperature dependence of the ratio of the Cu(2)
and O(2, 3) relaxation rates (Ti '), /(Ti )o. The experimental
data are from Hammel et al. [18]. The various curves have the
same parameters as in Fig. 2.

of this reduction is not important since the primary eAect
of the quasiparticle lifetime is to cut off the Hebel-
Slichter s-wave logarithmic singularity at T, While it is

possible to suppress the s-wave Hebel-Slichter peak with

a sufficiently large damping rate, this would appear to re-

quire a lifetime significantly shorter than that estimated
from the oi(ro), and the overall fit to Ti ' is not as satis-
factory as the d-wave fit shown in Fig. 2. In addition, at
low temperatures, the T] ' data appear to vary as T in

agreement with the results for a d-wave gap [12]. How-

ever, at these low reduced temperatures where T] ' has

significantly decreased, other relaxation processes may
become dominant.

As previously discussed [13], the coherence factor
I+ (c&+qcz+h&iqAz)/E~iqE& determining the low-fre-

quency spin-fluctuation spectral weight of go for
q-(n, x) is finite for an s-wave gap and vanishes for a
d-wave gap since hz+&, ,i= —6&. Thus the q-(z, z)
spectral weight entering the calculation for T ] is

suppressed below T,. for a d wave rather than exhibiting a
Hebel-Slichter peak as it does for an s wave. In addition,
the d-wave single-particle density of states has only a log-
arithrnic singularity at h, . As seen in Fig. 2, these eAects
along with the decrease in the Stoner enhancement factor
and the damping suppress the Hebel-Slichter peak in

Ti ' for both Cu(2) and O(2, 3), providing a reasonable
fit to the experimental data [14].

In Fig. 3 we show the temperature dependence of the
Cu(2) anisotropy ratio (Tl '),I,/(Ti '), . Here (Tl '),I,

is the Cu(2) nuclear relaxation rate when the magnetic
field is in the a bplane. In Fig.-4, the ratio of the Cu(2)
to O(2, 3) relaxation rates (Ti '), ./(Ti ')o, normalized

to their ratio at T, , is shown versus the reduced tempera-
ture. Within the framework of the simple model we are
analyzing, we note that the Mila-Rice hyperfine form fac-
tor for (Ti ')„t, has more weight near q-(z, z) than
does the (Ti '), form factor, which in turn has more
weight near q —(x,n) than the O(2, 3) hyperfine form
factor. Thus the decrease in these ratios for an s-wave

gap reflects the decrease in the antiferromagnetic contri-
bution to the spin-fluctuation spectral weight relative to
the q=(0, 0) part due to the opening of a gap. A similar
initial decrease in this ratio occurs for a d-wave gap.
However, at lower reduced temperatures, the q=0 spec-
tral weight decreases more rapidly than the q=(z, z)
spectral weight because of the nodes in the d-wave gap.
This produces the eventual upturn for the case of a d-
wave gap shown in Figs. 3 and 4.

From this analysis, it would appear that a gap with

d,.~,, symmetry and 25(0)/kT, of order 6 to .8 provides
the most reasonable fit to the NMR data below T, . If
this is correct, it implies that the pairing interaction is

repulsive at large momentum transfers and points directly
to the exchange of an antiferromagnetic spin fluctuation
as the mechanism responsible for superconductivity in the
cuprates. Ho~ever, it is also possible that the simple
form of the susceptibility, Eq. (I ) (and perhaps the insu-

lating hyperfine form factors), we have used fails to ade-

quately describe the interplay of superconductivity and

spin fluctuations in these materials.
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