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Analytic results are presented for the dynamic behavior of sliding charge-density waves (CDW’s) and
related extended nonlinear systems with randomness. It is shown that, in the limit of long times, a slid-
ing configuration approaches a unique solution. In CDW models, the velocity of this asymptotic solution
is periodic in time. These results explain previous numerical observations, simplify further analysis and

simulation, and have direct experimental implications.

PACS numbers: 71.45.Lr

There are many physical systems, including interfaces
in random media, flux lattices in type-II superconductors,
and charge-density waves (CDW’s), where many degrees
of freedom interact strongly in a random environment. A
common problem in such systems is determining the
response to an external drive, e.g., current or electric
field; this is the problem of collective transport in systems
with quenched randomness [1]. A general difficulty in
treating random systems is the existence of many meta-
stable solutions, which can complicate both analysis and
numerical computations. However, in some systems ex-
hibiting collective transport, the dynamics, though still
complex, is simpler than might be expected. I report here
analytic results that explain this behavior, under certain
conditions, using CDW transport as an example system
and summarizing the extension to other systems below.

An incommensurate charge-density wave in a solid can
be modeled as an elastic medium that is subject to both
spatially varying pinning forces, due to impurities, and a
uniform external force, due to an electric field [2-4]. If
thermal noise can be neglected, the possible dynamical
behaviors of CDW’s can be sharply divided into two
types: pinned and sliding. For small drive fields, the im-
purities pin the CDW in one of many static configu-
rations. If the field is then increased above a threshold
value, the CDW slides with a nonzero average velocity,
thereby contributing to the electric current. The equa-
tions of motion for the CDW are nonlinear and describe
an extended system with quenched randomness. It there-
fore would not be surprising for the CDW to exhibit some
sort of turbulent behavior in the sliding state, or, at least,
that there would be an aperiodic attractor or multiple at-
tractors for the CDW dynamics.

However, as I show in this Letter for a broad class of
models describing CDW’s and related systems, sliding
configurations approach, at long times, a solution that is
unique up to time translation. Also, the transition be-
tween pinned and sliding states is nonhysteretic. These
results are generally applicable when the equations of
motion are first order in time, phase distortions are de-
scribed by a single component, and the elastic force be-
tween phases on neighboring sites increases with the
phase gradient (i.e., the interaction potential is convex).
For the periodic pinning potential of the CDW model, the

CDW sliding state has a particularly simple temporal be-
havior, with the CDW velocity at each point being
periodic in time, though the spatial behavior is quite com-
plex [2,3,5-71.

These results confirm and extend conjectures based on
numerical work for CDW’s [5] and have direct experi-
mental and theoretical implications [2,3,8]. An experi-
mental consequence is that, after initial transients, the
properties of a CDW measured in the sliding state should
be independent of history. This is consistent with experi-
ments in the sliding state [2,3] and is in marked contrast
with measurements in the pinned state [2,3,9]. In addi-
tion, the observed broadband noise in CDW’s must be
due to effects not included in the simplest deterministic
models, perhaps thermal fluctuations or CDW defects.
The uniqueness and periodicity of the sliding state are
useful in designing and interpreting numerical simula-
tions of CDW models [5,7]. The analytical treatment of
the critical behavior of the CDW depinning transition is
also aided by these results. The assumption of uniqueness
explicitly underlies previous speculations on the critical
behavior by Fisher [8] and increases the possibility of
successful perturbative treatment.

The CDW model [4] that will be used as the primary
example here is a simplification of the dynamical model
due to Sneddon, Cross, and Fisher (SCF). The simplified
model reproduces the complex behavior of CDW’s, in-
cluding the depinning transition, mode-locking, and sub-
threshold hysteresis [2-4]. The CDW configuration in
this model is described by the real variables ¢;, which
give the CDW distortions at /V lattice sites indexed by i.
The equations of motion for an overdamped CDW, de-
rived from a potential which is the sum of pinning, drive,
and simple elastic terms, are [5,6]

e =A% —Vi(p))+F(), M

with A’ being the lattice Laplacian and &;=(d/dt)¢;,
where ¢ is time. The N pinning potentials V;, from which
the pinning forces — ¥/ arise, are each periodic, with
period 2x, and are assumed to be continuously differen-
tiable. The average CDW velocity is defined as v
=lim7 .(NT) "'Xlp;(T) —¢;(0)] and is positive for
constant drive fields F > F;it, where F7 is the positive
threshold field. Note that the elastic potential is convex,
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with the magnitude of the elastic forces (given by the
A%p; term) increasing for increasing separation of
nearest-neighbor ¢;’s.

A very useful constraint on CDW motion is given by a
“no-passing” rule [7]. Given a drive F and pinning po-
tentials V;, consider two initial CDW phase configura-
tions, with one configuration, ¢5(0), the “lesser” and the
other, ¢?(0), the “greater,” with ¢£(0) = ¢£(0), for all
sites i. The no-passing rule states that the greater solu-
tion is never “passed” by the lesser at any point or subse-
quent time, i.e., ¢C(t) =} (1), for all i and all 1=0.
This can be seen by noting that if passing were to occur,
the lesser solution must first approach the greater one. If
the two solutions approach each other at some initial
crossing site, the pinning and drive forces for the two
solutions tend to become equal at that site. The elastic
forces due to neighboring sites therefore determine the
relative evolution of the two solutions at that site and
prevent the lesser solutions from passing the greater (see
Fig. 1). This rule relies crucially on the elastic potential
being convex.

It follows from the no-passing rule that, for a finite sys-
tem with given pinning V; and constant or periodic drive
field F(¢), all solutions to the equations of motion must
have the same long-term average velocity v. Choose any
two solutions to the equation of motion. Using the
¢;i— »;+ 2 invariance of the equations of motion, either
solution can be made to be the lesser initially, without
changing its velocity. By the no-passing rule, the motion
of the lesser solution is bounded by the greater, implying
that the lesser solution has a velocity smaller than or
equal to that of the greater [10]. Since the choice of the
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FIG. I. (a) Two configurations, ¢ (solid circles) and ¢}
(open circles), which are ordered at time t, i.e., 7(1) = o} (1),
for all i. If the configurations approach each other, local pin-
ning and drive forces become equal. Elastic forces, represented
by the arrows, then prevent ¢/ from exceeding ¢f at any site or
time, resulting in the “‘no-passing™ rule. (b) The relationship
between bounding configurations ¢”(z * (1)) (dashed lines) and
the configuration of an arbitrary solution ¢;(t). The bounding
of the arbitrary configuration and the subsequent separation of
the configurations as they evolve is used to prove asymptotic
uniqueness of the sliding state.

initially lesser configuration is arbitrary, the velocity must
be independent of the initial configuration [11]. A corol-
lary is that the threshold field for sliding, F7, is indepen-
dent of history.

I now outline the proof that all sliding solutions to Eq.
(1) approach a solution that is unique up to time transla-
tion, as t— oo, given a pinning realization V; and con-
stant F> F7. Details of this proof are described below.
It is first necessary to show the existence of a solution
where the local velocities are positive at all sites. This
solution then gives a set of CDW configurations, indexed
by the time. The configuration of an arbitrary solution at
a given time can be bounded from above and below by
configurations chosen from this set. The best upper and
lower bounds are those which coincide with the given
configuration at one or more points [see Fig. 1(b)].
These bounding configurations are then considered as ini-
tial conditions for the equation of motion and the subse-
quent evolution of these “bounding solutions” can be
compared with that of the arbitrary solution. As time in-
creases, the arbitrary solution separates from the bound-
ing solutions, due to elastic forces, which determine the
relative evolution of two solutions at points of coin-
cidence. The upper and lower bounding configurations
can therefore be improved as time increases, with the im-
proved bounds approaching each other as t— oo. The ar-
bitrary solution therefore approaches the positive velocity
solution at long times (for F > F7t).

The construction of a positive velocity solution relies on
a result similar to the no-passing rule: If the local veloci-
ties ¢; for a solution to Eq. (1) are initially all positive,
then they will always be positive (though the velocities
approach 0 as t— o for 0 < F < F7'). By differentia-
tion of the equations of motion Eq. (1),

i () =A%)+ V" (0: (1)) (1) . ()

Suppose that at time ¢ =0, all of the velocities are posi-
tive, »;(0) > 0, but that there is a time ¢* > 0, which is
the first time at which the velocity at any site is zero. Let
J be a site where ¢;(¢*) =0. As the velocity on neighbor-
ing sites is non-negative, A%p;(t) = 0, which, by Eq. (2),
implies that ¥;|,«=0. Consequently, ;(1) <0 in some
interval of time preceding ¢*, contradicting the definition
of t*. The velocities are therefore always positive.

It is straightforward to construct a solution with initial
velocities all positive. Let ¢f(z) be the solution to the
equations of motion for constant F > 0, with initial condi-
tion ¢f(0) chosen to be a configuration that is static for
F=0. By Eq. (1), the local velocities at time t =07 are
then all equal to F > 0 and hence positive for all time.

Given constant F > F, let ¢;(t) be an arbitrary solu-
tion to the equations of motion Eq. (1). One can then
define a function 7 ~(¢), which is the maximum time at
which the positive velocity solution ¢/ trails ¢; (¢):

v () =supls|e; (1) = ¢/ (s), forallil. 3)
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Similarly, 7 *(¢) is defined as the least time at which ¢/
is greater than ¢;(¢):

t Y () =infls|e; (1) < ¢P(s), forallil. 4)

The function 7 ¥ (z) is well defined for all ¢, since F > F7
implies that ¢f(s) is unbounded for all i. The function
7 ~(#) is well defined after the earliest time at which
#; (1) is greater than the configuration ¢#?(0).

To obtain the desired result, it is necessary to show
that the difference in the bounding times, Ar=1 *(z)
—1 ~(t), approaches zero as t— . Given a time
to=0, consider the two solutions to the equations of
motion ¢; (1g+1') and ¢”(z * (19) +1'). If one defines the
field

wit)=ol(t (1) +1') —;(to+1') , (5)

then y; (') =0 for all "= 0, by the no-passing rule and
the definition of 7 *(z). Actually, a stricter condition
holds: w;(1')>0 for all t'>0, unless ¢”(z*(10))
=p;(t9) for all i. This can be seen by considering the
equations of motion for y;(t') evaluated at a site where
v; =0:

Wily, =0=A%;. (6)

Suppose that at a site i, y; =0. If y; > 0 for some neigh-
boring site j, (d/dt')y; > 0. It can be seen by repeated
differentiation of Eq. (6), that, if the nearest site j where
y; > 0 is m sites distant, (d/dt")™y; > 0, with all lower-
order derivatives zero. As the lowest-order nonzero
derivative of y;(¢') is positive, y;(t') > 0 for ¢'> 0 (once
y; is positive, it cannot return to zero).

The bound on w;(¢') implies that the solutions ¢;(zo
+1') and ¢ (z T (19) +1¢'), which coincide at one or more
sites when 1'=0, do not coincide anywhere for ¢'> 0.
Since the local velocities can be shown to be finite,

Y (o+t) <tV (tg) for t'>0; (7)

that is, the bounding time t ¥ (¢) decreases or improves
as t increases. Similarly, 7 ~(z) is a monotonically in-
creasing function, bounded above by 7 *(¢). As the arbi-
trary solution at a given time and the corresponding
bounding solutions always separate, there is no fixed
point for At, except at At =0. This implies that At
must approach 0 as t— oo. The arbitrary solution ¢; and
the given positive velocity solution ¢ approach each oth-
er in the sense that there is a constant 7 =lim, . w7 T (1)
=]lim, . 7 _(¢) with

lim lp;(t) —of(t+1)1=0 foralli. (8)

The asymptotic equality Eq. (8) can be used to indirectly
compare any two solutions, implying that all solutions ap-
proach a solution unique up to time translations, as
{—> oo,

Using uniqueness, it is easily seen that in CDW mod-
els, where V; is periodic, the local velocities of the unique
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asymptotic solution are periodic in time; the shape of the
configuration repeats itself with period 7=2xr/|v]. Let
»;(1) be a solution to the equations of motion Eq. (1).
The translation ¢;(t)— ¢;(t) +2x gives another solution
to the equations of motion. As t — oo, these solutions are
related by a time translation, i.e.,

<P,‘(t+T)_‘P,'(t)_2ﬂ’*’0, )

for some constant T, as t — oo, giving the stated periodi-
city.

I now summarize some applications to related models.

Continuous media.— These results can be extended to
versions of Eq. (1) where the displacement is a continu-
ously differentiable function of position r, if the magni-
tude of the elastic forces increases with increasing |Ve|
and the equations of motion are first order in time. An
example of such a system, with strong nonlinearity, is
given by the equation of motion [12],

o) =h(Ve) 2+ P(VZ)+ V' (p,r) +F(1) , (10)

where P(x) is a monotonically increasing function of x;
such a model might be used to describe interface dynam-
ics in a random medium, with ¢ being the interface
height. The terms due to the drive force, the pinning
force, and the gradient squared are identical at a point of
tangential contact of two ordered configurations. The
elastic term then separates configurations that are in con-
tact, implying that the no-passing rule and uniqueness of
the sliding state hold for this model (if the configuration
widths are shown to be bounded).

SCF model.—The SCF model for CDW’s is more
complex than that of Eq. (1), as the pinning potential is
not constant in the sliding CDW frame. By scaling space
and time, the SCF model can be written as [4]

¢=V+U.(t+¢2)p(r)+F, an

where Z is the direction of CDW modulation and trans-
port, U is the impurity potential, and p(r) is the charge
density, which is periodic in Z. In order for there to be a
one-to-one mapping between the CDW coordinate r and
the laboratory-frame position R, given by R=r+¢(r)z,
it is necessary to assume no phase slip [13,14] and
|8¢/8z| < 1. Such constraints can be satisfied if the elas-
tic constant increases as 0¢/dz increases (i.e., “hard”
springs; for the case of simple spring forces, the gradient
of ¢ is unbounded [14]). It is then easy to verify the no-
passing rule and the uniqueness of the sliding state, given
boundary conditions either periodic in the Z direction or
such that no-passing explicitly holds at the boundaries of
the sample in the laboratory frame (this is physically
reasonable, as the formation of CDW’s at the boundary
will be affected by the interior phases). The periodicity
of the sliding state is then the consequence of uniqueness
and the invariance of the equations of motion under the
combined operations ¢— ¢+2x, r— r—2nZ. The local
CDW velocities are periodic, measured at a fixed point in
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the laboratory frame.

Automata.— It is possible to write down, as approxi-
mations to CDW’s in an ac field, synchronous automaton
models, where time is discrete and the site variables are
integers [15]. The proof of the uniqueness of the sliding
state does not apply to the synchronous automaton or to
full models of a CDW in an ac field, as the evolution of
solutions can be compared only at a discrete set of times,
rather than a continuous set. However, the no-passing
rule and uniqueness of the average velocity do hold in
these models.

Higher-dimensional order parameters.—The results
shown here are not applicable to the case of a more com-
plex parameter, where there is no natural partial ordering
of the configurations, as a no-passing rule cannot be
defined. For example, in defect-free flux lattices in type-
II superconductors, distortions are described by a dis-
placement vector which is two dimensional. It is easy to
define single-particle models with two-component dis-
placements which exhibit nonunique velocities. CDW
models with phase slip, which can be described by non-
convex elastic potentials or a two-dimensional order pa-
rameter, are known to exhibit hysteretic v vs F behavior
[13].
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