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Optical Dynamics in Crystal Slabs: Crossover from Superradiant Excitons to Bulk Polaritons
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The radiative-excited-state dynamics in crystal sl;lbs is studied as a function of the slab thickness L. A

general dispersion relation is derived that interpolates between the superradiant-exciton regime at
thicknesses small compared to an optical wavelength A. and bulk polaritons in thick crystals. It is shown

that previous results predicting superradiance in thick slabs (l ))X) arise from invalid pole approxima-
tions.

PACS numbers: 73.20.Dx, 36.40.+d, 42.50.Fx, 71.36.+e

Currently, there is a strong interest in the optical prop-
erties of systems with restricted geometries. In particu-
lar, much attention is focused on exciton superradiance
from, e.g. , molecular aggregates [1,2], polymers [3],
semiconductor microcrystallites [4-6], quantum wells

[6,7], and monolayers [8,91. Exciton superradiance is the
phenomenon that an electronic excitation (Frenkel or
Wannier) that is coherently delocalized over N unit cells
exhibits a spontaneous emission rate that is proportional
to N and is thus much larger than typical molecular radi-
ative decay rates. Superradiance originates from the fact
that for systems small compared to an optical wave-

length, all oscillator strength is collected in one collective
superradiant excited state; all other excited states have no

transition dipole to the system's ground state and are
subradiant or dark. However, it is well known that the
enhancement of the emission rate with system size does
not continue forever: In infinite bulk crystals, irreversible
radiative decay cannot occur, because the translational
symmetry dictates that each exciton mode is coupled to
precisely one radiation-field mode. Therefore, the proper
eigenmodes of bulk crystals are the radiatively stable po-
laritons: mixed modes in which energy oscillates back
and forth between the exciton (polarization field) and the
radiation field [10]. Probing the dynamics of polaritons

by nonlinear optical techniques is another topic that has
attracted much attention lately [I I]. Obviously, superra-
diant excitons and bulk polaritons are intimately related
and it is an interesting challenge to study the transition
from one regime to the other with growing system size.
In this paper, we approach this problem by studying the
radiative-exciton dynamics in molecular crystal slabs of
arbitrary thickness, varying from monolayers to bulk

crystals. Crystal slabs have been studied before [12,13],
but no systematic investigation of' the thickness depen-
dence and the crossover between the superradiant and the
polariton regimes has been published so far.

We consider a crystal slab with simple cubic structure
which consists of a stack of W identical monolayers. The
lattice sites are occupied by harmonic molecules with

electronic transition frequency 0 and transition dipoles

p. All dipoles have the same orientation, which for sim-

plicity we assume to be parallel to the molecular planes.
We will confine our attention to crystal states that are

modulated in the direction perpendicular to the slab (the:direction) only, so that all molecules in a single plane
are completely equivalent. Let Bt (t) [Bt(t)] denote the
expectation value of the creation (annihilation) operator
for an excitation on an arbitrary molecule in the 1th
plane at time t (I= I, . . . , iV). From these operators,
Frenkel exciton operators are constructed by the canoni-
cal transformation Bt, =gt =

~ Bt exp( —i kla )/ JlV (and
the complex conjugate for Bq ). Here, a denotes the lat-
tice constant and k is the exciton wave number that takes
the values k =2nm/Na, with m an integer that is limited
to one Brillouin zone (m =0, . . . , JV —

I ). We use the
standard minimal coupling (p A) Hamiltonian [I I].
Then, the radiative dynamics of the electronic eigen-
modes of the slab can be derived from the coupled
Heisenberg equations of motion for the exciton operators
and the vector potential. It is straightforward to elimi-
nate the vector potential from these equations and in the
frequency domain [f(to) =—fo dt f(t) exp(itat)] we have

(ta —&)Bt, (ta) —g [Jbt, t, +Ft, t, (N;to)]

x [Bt, (co)+B-t, (ta)l =iBt, (t =0),

and an analogous equation for Bt, (co), which is obtained

by complex conjugation of Eq. (I). In deriving this equa-
tion, we used vacuum initial conditions for the radiation
field, as is appropriate for spontaneous emission problems.
The most important ingredients in Eq. (I ) are the in-

teractions J and F. JBq l, derives from the static dipole-
dipole interactions in the slab, where J is the total in-

teraction between a dipole and all other dipoles lying in

the same plane. It is known that the static dipole interac-
tions between planes have a very short range and that the
overwhelming part (97'%%uo) ol' the crystal's static Coulomb
energy arises from interactions within a single plane [14].
This justifies the use of periodic boundary conditions
when accounting for static interactions (k stays a good
quantum number) and the neglect of k and iV dependence
of the static energy. Generalizations that account for end
effects and (or) spatial dispersion are possible, but do not

affect the main conclusions of this paper. Ft, t, (N;to) is

the effective radiative interaction, resulting from the ex-
change of photons with wave vector (0,0,q) between the
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excitons k and k':

~rf2 $'"d 0(k' q—)0(q k—)
4«' " " (rok)' —q'-

0( )
sin(pNa/2), p(~+, ),i2p = e

JA' sin(pa/2)

(2a)

(2b)

Here, c is the vacuum velocity of light and f =SnO—p /
Aa, which is a measure of the density of oscillator
strength in the slab. In contrast to k and k', the photon
wave number q is a continuous variable, as the radiation
field is quantized in an infinite box that is not limited by
the finite thickness of the slab. This is crucial for the
description of spontaneous decay from the slab. The
function O(p) gives the overlap between the exciton and
the photon wave functions. We observe that Ftt. (N;ro)
vanishes for co/c 0, illustrating the fact that it is a re-
tarded interaction. Furthermore, we note that if in Eq.
(I) we replace Ftt (N;ro) by Ftt (N;0, ), we recover the
superradiance master equation [15]; this equation is very
useful to study cooperative emission effects [2], but can-
not describe polaritons in bulk crystals.

Equation (I ), together with its analog for Bt (ro),
defines a set of 2N coupled linear equations that deter-
mine the full excited-state dynamics of the slab. In gen-
eral, solution of this set requires numerical techniques,
but the problem simplifies considerably if the off-diagonal
elements of F&& may be neglected. This can, of course,
always be done during the initial decay of an exciton k,
but a more general justification is found in the following.
The function 0(p) is peaked around p=0 with a width

&p =2rr/Na. Using this in Eq. (2a) together with the fact
that both k and k' vary discretely with steps 2rr/Na, we
conclude that Ftt (N;at) is strongly peaked around k =k'
and is diagonal to a good approximation. Within this ap-
proximation, Bt(ro) and 8-t(ro) are easily solved in

terms of their initial conditions and these solutions must
be transformed back to the time domain in order to ob-
tain the radiative-exciton decay. This transformation in-
volves the poles of Bt(ro) and Bt t(ro), which can be
directly determined from the secular equation of Eq. (I)
(in approximate form) and its analog for 8 —t(ro). We
obtain

our general dispersion relation of the coupled exciton-
photon modes for a slab of arbitrary thickness and consti-
tute the central result of this paper, of which all further
results are special applications.

We first discuss the limiting cases JV = I (monolayer)
and N =~ (bulk), for which the restriction to Ftt
=81,1, Fl,-l,- is no approximation. For N =1, we only have
one k value (k =0) and it can be shown that the real
part of Eq. (4) vanishes identically, so that Foo(I;ro) =

iaf—/4c Th. is yields for the decay rate of the mono-
layer exciton the value go= af /4e—, which is superradiant,
as it roughly equals the spontaneous emission rate of a
single molecule multipled by (c/Qa) (typically 10—
IO ) [8,9]. For N=~, only the summation over n in

Eq. (4) remains and we find a purely real self-energy
Ftt(~;ro). Keeping only the n=0 term in the summa-
tion is equivalent to neglecting umklapp contributions.
Within this common approximation, Eq. (3) reduces to
the standard quartic dispersion relation for bulk polari-
tons [10,11]:

(kc/ro) '=
I +f '/-(ro„'„—ro') —=e(ro), (5)

This is the ex' ton-pole approximation, which is
equivalent to second-order perturbation theory in the
exciton-photon interaction. Re[Fthm (N;co„„)] is now the
radiation-induced energy shift of the exciton and—Im[Ftt(N;ro„. „)] the radiative damping rate (identical
to the Fermi "golden rule" ). Straightforward analysis of
Im[Ftt (N;ro„.„)] shows that for slabs with a thickness
small compared to an optical wavelength (L «)l., with

with e(ro) the crystal's dielectric function. The solutions
to Eq. (5) are real, confirming radiative stability of the
bulk polari tons, and they lie on the two polariton
branches depicted in Fig. 1.

For general N, it is impossible to solve the dispersion
relation Eq. (3) exactly, but several interesting results
can be obtained using pole approximations. Considering
the term 2roF(ro) in Eq. (3) a small perturbation to the
static-exciton dispersion relation, it is found that

ro = ro,.„+Ft t (N; ro„„).

ro —ro„.„—2coFtt (N;ro) =0, (3)

( ) af ) Stfl(NQ )
sin (p )

g J'=

ilvri + (~
— —~+ )

r

k+ 2nD

a

where co„.„=—(0-+20J) '~, the frequency of the static ex-
citons. Performing the q integral in Eq. (2a) in the com-
plex plane, we find for the radiative self-energy
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with p —:—(k+ro/c)a/2. Equations (3) and (4) define
WAVE NUMBER

FIG. I. Polariton dispersion diagram lcf. Eq. (5)l.
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L—=Na and A, =2rrc/ro, „)., the k =0 state is superradiant
with decay rate N times the monolayer rate yo, whereas
all other k. states are relatively dark, with spontaneous
emission rates that are orders of magnitude smaller. The
superradiant nature of the k =0 state breaks down when
the slab thickness gets in the order of X, as can be seen in

Fig. 2. More precisely, the maximum rate is reached at
L =0.37K, and equals 0.23(k/a) yo. The maximum
cooperativity volume of the dipoles in the slab is thus of
the order A, '. For L & k, the decay rate shows oscillatory
dependence on L, as a result of interference between the
radiation fields emitted by the various molecules in the
slab. The amplitude of these oscillations drops off as I/L,
so that for k =0 we indeed predict a smooth crossover
from the superradiant exciton to the stable bulk polariton
when varying 1V from 1 to ~.

The situation is more complicated for wave numbers
k = ro„„/c (the photon-exciton band-crossing region).
From Eq. (4), it follows that in this region Im[Ftt(N;
ro,„)] s.cales linearly with N for all values of N, which
implies that superradiant behavior persists for slabs with
L »A. and leads to a decay rate that diverges linearly for
large L. This result, which is obtained in any pole ap-
proximation that evaluates Ftt (N;ro) at the point k
= to/c [l6], contradicts the polariton concept and sug-
gests that the radiative stability of the bulk polariton is

merely a peculiarity of the truly infinite system that
cannot be found by extrapolation from finite crystals.
However, the noted divergence is an artifact caused by
the breakdown of the exciton-pole approximation at k
= co„„/c, because Ftt (N;ro„„) is not a smooth function in

that region (in contrast to the situation at k =0). The
relevant singularity in the self-energy is the photon Green
function given by the n =0 term in Eq. (4), and the diver-
gence problem can be solved by extracting this term from
F&& (N;ro) and treating it nonperturbatively. The disper-
sion relation [Eq. (3)] then obtains the representation

(ro-' —toj'-,
i ) (ro' rot'2) +—(tof )

—2ro[ro' —(kc)']Ftt (N;ro) =0. (7)

0.2

0. 1

f IG. 2. Radiative decay rate of the k =0 exciton as a func-
tion of crystal thickness in the exciton-pole approximation.
Note that )I/a typically equals 10'.

yt;(N) =(l —Rti)(t /L, (9)

10

several important remarks can be made. (I) At wave
numbers I'ar from ro„.„/c, Eq. (8) reduces to the exciton-
pole approximation, which is thus indeed found to be a
good approximation away from the crossing region. (2)
As kc~coi, i for every k, the linear divergence observed in

the exciton-pole approximation at kr = cu„„cannot occur
in the polariton-pole approximation. In fact, Eq. (8) al-
ways predicts a decay rate proportional to I/L for large
L, showing proper crossover to the stable bulk polariton
at every wave number. (3) From macroscopic electro-
dynamics, one expects that a polariton wave packet de-
cays by transmission through the slab surfaces into the
external space. In combination with the time of flight
needed to reach the surface, this yields a decay rate [8,9]

cot ( (kc)
yt ((N) = —

I ImFtt (N;rot () .
I;2

(8)

Here, rot/ (j = I,2) denotes the frequency of the bulk po-
lariton with wave number k in branch j. We now intro-
duce the polariton-pole approximation by considering
the last two terms in Eq. (7), which are well behaved
every~here in the Brillouin zone, small perturbations to
the bulk polariton dispersion relation given by the first
term. From this, we obtain the damping rate of the po-
1ariton with wave number k in branch 1 in a finite crystal: l

2

wave number (co /c)

yt2(N) is obtained by interchanging the branch labels in

this expression. The exciton decay can now be expressed
in terms of yt ((N) and yt 2(N) and will in general not be
rnonoexponential. Without going into a detailed analysis,

FIG. 3. Radiative decay rate of polaritons as a function of
wave number in the optical region for a crystal of N =10 lay-

ers, with l(/a =10 and f/(((, „=i/30. Solid curves are obta. ined

from the microscopic result [Eq. {8)I and dashed curves repre-
sent the macroscopic rate [Eq. {9)l.

656



VOLUME 68, NUMBER 5 PHYSICAL REVIEW LETTERS 3 FEBRUARY 1992

where Ri,i is the internal reflection coefficient of the po-
lariton and vtj its group velocity. In Fig. 3, Eq. (9) is

compared with a wave-packet decay rate obtained from
our microscopic result [Eq. (8)] by replacing the factor
sin (rute L/2c) in Im [Ftl, (1V;roti ) ] by its average
(large L). Excellent agreement between the two predic-
tions is observed near the crossing region and for photon-
like polaritons; this agreement can also be shown analyti-
cally. No agreement is found for the excitonlike polari-
tons, however. In our system of harmonic molecules,
there is no obvious reason why these polaritons should
behave in a less classical way than the photonlike polari-
tons, but the observation that the k =0 excitonlike polari-
ton has no group velocity (not even when spatial disper-
sion is added) already indicates the limited validity of Eq.
(9). Also note that in the macroscopic wave-packet pic-
ture, the polariton decay rate in the crossing region
(v&i=c) may exceed an optical frequency for L(A„
which poses a natural boundary on this model; the full re-
sult [Eq. (8)] does not suffer from this limitation.

I n conclusion, we have derived a general exciton
dispersion relation for crystal slabs of arbitrary thickness
that accounts for (multiple) interactions with the radia-
tion field. Our theory smoothly interpolates between
superradiant-exciton behavior at small thickness and
stable bulk polaritons at large thickness. We have
demonstrated that predictions about superradiance in

thick crystal slabs (L»k) result from invalid pole ap-
proximations that equate the frequency and the wave vec-
tor in the radiative self-energy, and we have made a com-
parison with the radiative lifetime of polaritons as ob-
tained from macroscopic transmission and time-of-flight
arguments. Finally, we note that in practice both exciton
superradiance and the observation of polariton effects are

limited by static disorder and phonon scattering (see, e.g. ,
Refs. [2], [I I], and [17]). In this paper, we have not ad-
dressed these complications, in order not to obscure the
main issue: the transition from superradiant excitons to
stable polaritons.
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