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Conductance and Statistical Properties of Metallic Spectra
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'A/e present a new expression of the dissipative conductance and study under which conditions it is

equal to the Thouless conductance defined as the curvature of the energy levels for a change of the
bound;lry conditions. This equality is related to the transition between diAerent classes of universality of
random matrices.
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In this Letter we study the connection between statisti-
cal properties of the energy spectrum of metals and the
dissipation. This problem was first considered by Thou-
less [I] who argued that the electrical conductance can be
related to the sensitivity of the energy spectrum to a
change of the boundary conditions.

This relation between a transport quantity and a prop-
erty of the equilibrium spectrum is not obvious. On the
one hand, the conductance g, I is the dissipatil e quantity
given by the Kubo formula. On the other hand, the sensi-

tivity of the energy levels to the boundary conditions may
be characterized as follows. Let the wave function y
obey the general boundary condition, y(x+L) =y(x)e'~.
Then, at small p the energy levels move quadratically.
The individual level curvature at the origin (p =0) is easi-

ly found from perturbation theory. It is given by

l«lp, ln)l'
2 2
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where E„ is a single level energy and p, the momentum
along the x direction. For a metallic system, i.e., in the
presence of disorder, this curvature is a random quantity.
Let ~s denote by g, its typical value measured in units of
the mean level spacing h, :

(2)

where ( ) represents an average over the disorder.
The fundamental relation g,I =g, . between g,j, a trans-

port quantity, and g, , an equilibrium quantity, is known
as the Thouless formula. Its derivation uses two assump-
tions. One of them is to assume in Eq. (I ) that the ener-

gy levels are uncorrelated. This is not the case in metallic
systems [2]. The second approximation consists in re-
placing the nondiagonal matrix element of p, in Eq. (I)
hy its diagonal contribution at the Fermi level which is
proportional to the Kubo conductivity.

In this Letter, we go beyond the above approximations
to derive this relation in the metallic regime. In addition,
we show that this problem is related to the transition be-
tween universality classes of random matrices in the pres-
ence of time-reversal symmetry breaking. First, we pro-
pose a new expression of the dissipative conductance gd
based on scattering theory and compare it to the Kubo

formula. Then we examine under which conditions this
quantity is related to the curvature of the levels. To that
purpose, we describe the statistics of the energy levels
versus p in terms of the random matrix theory and relate
the conductance to the transition between the so-called
Gaussian orthogonal ensemble and the Gaussian unitary
ensemble, in the presence of time-reversal symmetry
breaking.

In order to calculate the dissipative conductance g,j, we
consider a ring threaded by an Aharonov-Bohm flux N.
There it is known, using a gauge transformation, that the
energy spectrum coincides with the one at zero flux
provided we make the change rlr(x+L) =y(x)e
where 4 =Oh/e is the IIux quantum. This IIux 4 is thus
a physical realization of the perturbation parameter p
=2z4/4&&. This geometry was recently considered to
study the persistent currents for a stationary ffux in the
mesoscopic limit [3-6]. It is also a paradigm used to cal-
culate the dissipative conductivity t7 when the flux N is

time dependent [7,8]. The standard derivation of cr is

based on a perturbation calculation for a discrete spec-
trum. Then, a phenomenological coupling to a reservoir
is introduced to smear out the energy spectrum and is

taken to zero at the end of the calculation before the
thermodynamic limit is considered. Here, we start from
a continuous spectrum and propose a description in terms
of the scattering phase shift [5]. We consider the case of
;& time depende-nt IIux of the form &b(t/T), where T is

some characteristic time scale, and we calculate the
current l(A) flowing in the ring, in perturbation theory
with the parameter I/T [9]. In the scattering approach,
since the thermodynamic limit is taken at the very begin-
ning, the spectrum is a continuum at the scale of h/T
To show the connection between the two approaches, we

first notice that in the limit t — ~ of an infinite volume,
it is always possible to associate with any solution n) of
energy F of the Hamiltonian at zero flux a solution n') in

the presence of the flux at the same energy. These two
stationary eigenstates differ in the asymptotic limit only

by a phase shift, so that there exists an operator S(E,rlr)

defined by ln') =S(E,tlr)ln). S is the on-shell scattering
matrix. The scattering phase shift rI(z, p) is then the
I'unction obtained trom the S+(z,p) matrix describing
outgoing waves by rl(=, p) =Imln DetS+(z, p). The rela-
tion between the IIux-dependent energy levels E(p) and
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rt(P) is then given by E(p)/h=rt(p). Moreover, the
Friedel sum rule connects the variation 6'g of the phase
shift to the one BN of the number of states.

An adiabatic limit can be found which corresponds to
the zeroth-order approximation T ~. It describes the
situation of a stationary flux. The persistent current flow-

ing in the ring is then known to be given by the sum of
the currents carried by the filled energy levels I.„d(@)

Q„—BE„/B&. It can also be expressed [5] in terms of
the total scattering phase shift as I.„d(@)= (I/~o).f.')dE B-,&(E,q).

We now consider the first-order correction in I/T. It
describes energy exchange between the system and the
external flux source and gives the first off-diagonal
correction to the S+ matrix. The corresponding current
I

~
(@) is given by

2

I ~(@(t))= rt(E, @) +0 — . (3)

It allows us to identify a conductance Gd given by
7

where we have used the Friedel sum rule z6'N =By which

relates the variation of the number of states to the total
phase shift. From now on, we will express all the quanti-
ties in terms of bN. Equation (5) is remarkable since it

relates the dissipation to a characteristic of the spectrum.
We see that g,i measures a global, @-averaged, property
of the spectrum, while g, . given by Eq. (2) measures a lo-

cal, N 0, property. We are now in a position to relate
these two quantities.

To that purpose, we assume the following expression
for the correlation function of BN:

t I

(bN(Eg, p)8N(Ei, p')) =D +D (6)

This assumption is equivalent to assuming that the har-
monics of hN(p) are not correlated. This was shown ex-

plicitly for noninteracting electrons in the metallic limit

nfl» I by means of a microscopic calculation [4] and

more generally observed numerically [3]. Taking Eq. (6)
into account, we have

G,) = I e B-
rt(Eg, y) (4)

N E),

7

B D

By

B'D
(7)

B$ 4=o
This expression of the conductance and the adiabatic ex-
pansion of the current in powers of I/T contains the
Kubo formula for the dissipative conductivity. A detailed
description of this is discussed in [9]. But let us present
an outline of it. The expression of Gd is proportional to
the square of the contribution at the Fermi level of
the persistent current [5] dtl(Ei, &)/dp = (tlat'o/A)i (Ef)
Moreover, the current i(EJ) is by definition related to
the diagonal matrix element of p„ through i (Ej)
=(e/mL)(nip, ln), where ln) describes eigenstates at the
Fermi level. The dissipative conductance G,I is then
rewritten as Gd =(2tre'6/m )n (E~)L 1&nip~In)l
where n(Ej) is the density of states at Ej. Ohm's law

Gd =o'L' - allows us therefore to identify the conductivi-

ty, o =(e 'h/m2)-n (Ej)L"l(nip,-ln)l . This expression
coincides exactly with those obtained through the Kubo
formula. Nevertheless, it is worth noticing that the con-
ductance Gd given by Eq. (4) is more general. First, it is

time dependent since the flux 4 is. For 4(t) = —Vt,

which describes the simplest situation of an applied emf,
G,I is, like g, a periodic function of time with period
6/2eV. The Kubo expression is then obtained from Eq.
(4) by taking the time or the flux average. This pro-
cedure can be compared to the usual linear response
derivation as shown in [9].

In order to make the connection between the statistical
properties of the energy spectrum and dissipation and to
derive the Thouless relation, we will consider now the di-
mensionless conductance gq=(Gd), where the angular
brackets and the overbar represent, respectively, averages
over the disorder and the flux (or the time), so that

g,I= N Eg,

Since D is a periodic function of p, we obtain gd
= —

—,
' (B-'D/Bq'-), =.. From Eq. (6) we have (BN-'(p))

=D (0) +D (p) and then

I B
gd = —— (bN (Ef,p))

4 By
2

y~0

Similarly, from Eqs. (2) and (6), we obtain

4

g,'=—,(bN'(Ef, y))
8By4 ',

a

so that for small p we can write the expansion

(9)

(lo)(bN (y)) =(8N-(0)) —2gdp + —, g, . p'.
On the other hand, by definition of g, [Eq. (2)], the

levels typically shift as

BE,yp(y)/a=! g, .y'-.

So far, we have expressed in terms of the two parame-
ters gd and g, , the variation of the two quantities
(8N-'(p)) and bEt„„(p) which characterize the statistical
properties of the spectrum. (bN ') is the fluctuati-on of
the number N of particles at fixed chemical potential E~.
This quantity measures the rigidity of the spectrum [2].
We show now that the flux variations of these two quanti-
ties (8N-(p)) and 6E&„„(p) are driven by a unique pa-
rameter. At this stage, it is the only requirement to es-
tablish that g,i and g, . are proportional.

To that purpose, we describe the statistical properties
df the energy spectrum of the metal by means of the ran-
dom matrix theory (RMT). First, let us underline its
main features [IO]. The energy spectrum of such a com-
plex system can be described by an ensemble of Hamil-
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tonian matrices H whose elements H;~ are independent
random variables with a Gaussian distribution of variance
i '=(H;, ) and zero average. We assume implicitly, but it

is worthwhile to notice, that in the thermodynamic limit
V ~, where the RMT assumptions are best justified,
the spectrum has a continuous part so that the energy lev-

els can be related to the scattering phase shift. This
prevents, for instance, considering the case of a localized
spectrum.

For a time-reversal invariant system described by the
Gaussian orthogonal ensemble (GOE), the Hamiltonian
matrices have real symmetric elements. When the time-
reversal symmetry is broken, for instance in the presence
of a magnetic field or an Aharonov-Bohm flux, the Ham-
iltonian matrices become complex Hermitean. The corre-
sponding ensemble is the Gaussian unitary ensemble
(GUE). The transition between these two ensembles, or-
thogonal (a =0) and unitary (a = I), has been considered

by Pandey and Mehta [I I] by means of an interpolating
ensemble of the form H=H(S)+I'aH(A), where H(S)
and H(A) are real symmetric and antisymmetric ma-
trices of dimension d and variance i -. They have shown

that the transition between GOE and GUE is driven by
the single parameter va/d, [12]. For a Gaussian matrix of
size d and variance i -, the mean level spacing is given by
h=| /Wd so that the parameter which drives the transi-
tion is the combination da-. This means that generally,
all the correlation functions depend only on this scaling
parameter. This result, which may appear natural in the
context of the RMT, has a fundamental consequence in

our physical problem.
Our last step is to make the connection between the

physical problem and the description of the time-reversal
symmetry breaking in the RMT. First the question arises
whether the RMT provides a good description of a metal
or not. By using a supersymmetric description of the
Hamiltonian of a disordered metal and reducing it to a
nonlinear o model field theory, Efetov [13] was able to
derive the various correlation functions of the energy lev-

els. He found them identical to those derived from the
RMT in the two limits a=0 and a= 1. But, in principle,
they can also be calculated in the crossover regime of in-

terest here. This, in addition to recent numerical calcula-
tions [14], shows the reliability of the RMT to describe a
metal. Now to describe the crossover at finite a, we

know, on the one hand, that for small values of a, the typ-
ical energy shift varies like de-'. On the other hand, at
small flux, the energy levels vary as g, . p [Eq. (11)l. This
suggests [14] the identification of the parameter da' with

g, . p [15]. Then for a metallic ring the transition between
the GOE and GUE due to a flux N is driven by the
unique parameter g, .p' which depends only on the charac-
teristics of the Hamiltonian matrix. All the statistical
properties of the spectrum thus depend on the single pa-
rameter g, .p-. This tells us first, that in the expansion of
(6/V-(p)) in Eq. (10), the fourth-order term is propor-
tional to the square of the second-order term, and second,
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that the small IIux behavior of (6%-(p)) and 6E,~„must
be characterized by the same parameter. As a result, we
deduce

g,I =ag, ,

which can also be rewritten as

(12)

(13)

" Permanent address: Physics Department. Technion israel

This is the central result of this Letter. It establishes the
Thouless relation between the typical curvature g, of the
energy levels and the dissipative conductance gd. From
Eq. (13), it can also be seen as a relation between the
typical zero flux curvature which is a local quantity and
the fiux average of' ((8E/8&)-) which contains informa-
tion about the flux dependence of the energy levels at any
value of p.

Let us now summarize the main results established in

this Letter. First, we have shown how the dissipative con-
ductance g,j depends only on the phase shift at the Fermi
energy, which is proportional to the diagonal matrix ele-
ment of p, . By describing the energy spectrum of a me-
tallic ring threaded by an Aharonov-Bohrn flux with the
random matrix theory, we showed that the dissipative
conductance is proportional to the typical zero-flux curva-
ture of the energy levels. This establishes the well-known
Thouless result with less restrictive assumptions. Never-
theless, our study cannot discriminate between various
microscopic models (for instance independent or interact-
ing electrons) but contains them through the parameter
a. All of our results can be rewritten in terms of the
scattering phase shift g instead of the number of states
and then apply also to the situation of an interacting elec-
tron gas described by a Fermi liquid theory.

The dissipation in the system is completely character-
ized by the nature of the transition between the orthogo-
nal (GOE) to the unitary (GUE) ensembles. The quad-
ratic term in Eq. (10) is negative. This is the signature of
the well-known result that the energy spectrum becomes
more rigid in the absence of time-reversal symmetry.

Our results could be of some interest to describe prop-
erties of so-called "quantum chaotic" systems. All these
calculations depend on the assumption that in the ther-
modynamic limit, the spectra for zero and nonzero fluxes
are similar. This supposes that both of them contain a
continuous part and that g, . » l. Therefore we cannot de-
scribe within our approach extreme situations such as the
Anderson localization transition or in the presence of a

genuine magnetic field, the transition to a spectrum of

Landau levels.
This research was supported in part by the National

Science Foundation under Grant No. P H Y89.04035.
E.A. acknowledges support by the Lady Davies Founda-
tion.



VOLUME 68, NUMBER 5 PH YSICAL REVIEW LETTERS 3 FEBRUARY 1992

I nstitute of Technology, 32000 Haifa, Israel.
" Permanent address: Laboratoire de Physique des Solides,

Universite Paris-Sud, 91405 Orsay, France.
[I] J. T. Edwards and D. J. Thouless, J. Phys. C 5, 807

(1972); D. J. Thouless, Phys. Rep. 13, 93 (1974).
[2] B. I. Alt'shuler and B. Shklovskii, Zh. Eksp. Teor. Fiz. 91,

220 (1986) [Sov. Phys. JETP 64, 127 (1986)l.
[3] H. Bouchiat and G. Montambaux, J. Phys. (Paris) 50,

2695 (1989).
[4] A. Schmid, Phys. Rev. Lett. 66, 80 (1991); B. L.

Altshuler, Y. Gefen, and Y. Imry, Phys. Rev. Lett. 66, 88
(1991); F. von Oppen and E. K. Riedel, Phys. Rev. Lett.
66, 84 (1991).

[5] E. Akkermans, A. Auerbach, J. E. Avron, and B. Shapiro,
Phys. Rev. Lett. 66, 76 (1991);E. Akkermans, Europhys.
Lett. 15, 709 (1991).

[6] V. Ambegaokar and U. Eckern, Phys. Rev. Lett. 65, 381
(1990).

[7] D. A. Greenwood, Proc. Phys. Soc. ll, 585 (1957).

[8] N. Trivedi and D. A. Browne, Phys. Rev. B 38, 9581
(1988); M. But tiker, in SQUID '85. Superconducting
Quanrunt Interference Devices and Iheir Applications
edited by H. D. Hahlbohm and H. Lubbig (de Gruyter,
Berlin, 1985), p. 529.

[9] E. Akkermans (to be published).
[10] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pan-

dey, and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981).
[I I] A. Pandey and M. I . Mehta, Commun. Math. Phys. $7,

449 (1983).
[12] For Gaussian matrices, the average interlevel spacing is

not a constant in the spectrum so that the transition de-
pends on the position in the spectrum.

[13] K. B. Efetov, Adv. Phys. 32, 53 (1983).
[141 N. Dupuis and G. Montambaux, Phys. Rev. B 43, 14390

(1991).
[15] It is not possible at this stage to go further in the

identification of the two terms except that a and III are
linearly related.

645


