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Are Fullereue Tubules Metallic?
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We have calculated the electronic structure of a fullerene tubule using a first-principles, self-
consistent, all-electron Gaussian-orbital based local-density-functional approach. Extending these re-
sults to a model containing an electron-lattice interaction, we estimate that the mean-field transition
temperature from a Peierls-distorted regime to a high-temperature metallic regime should be well below
room temperature. Such fullerene tubules should have the advantages (compared to other conjugated
carbon systems) of a carrier density similar to that of metals and zero band gap at room temperature.

PACS numbers: 71.20.Hk, 31.20.Sy, 36.20.Kd, 72.80.Le

New synthetic techniques have yielded macroscopic
amounts of a series of the all-carbon fullerenes C60 and
C7o [1]. Recently, elongated ellipsoidal structures have
been observed in transmission electron microscopy images
of fullerene materials [2], which were interpreted as
larger all-carbon fullerene cages containing roughly 130
carbons. Other workers have also considered the possibil-
ity of obtaining fullerene tubules [3,4], while work on
carbon fibers has demonstrated that tubular graphitic
filaments can be synthesized with filament diameters as
small as 10 nm [5]. We have examined a hollow ful-
lerene tubule using a first-principles local-density-func-
tional (LDF) band-structure approach [6], and show
herein that these structures, if synthesized, should have a
carrier density comparable to a good metal without dop-
ing.

The base fullerene C6o has a soccer-ball structure (a
truncated icosahedron) formed from twelve pentagons
and twenty hexagons [7-10]. Experimental evidence
[8,Ill implies that the larger fullerene, C7Q has a Dsi,
structure that can be constructed by orienting the C6o
along one of its Cs axes, and then inserting five new hexa-
gons by equatorially adding a planar ring of ten carbon
atoms. As discussed by several workers [3,41, an extend-
ed structure can be formed by continuing to add such
rings, each one rotated one-half full turn from the last.
We depict a section of such an extended structure in Fig.
1. The transverse dimensions of this tubule are consistent
with the observed ellipsoidal structures [2] having a
cross-section diameter of -0.7 nm, roughly that of the
diameter of Cqo.

We have calculated the electronic structure of an
infinitely long tubule using a first-principles, all-electron,
self-consistent method originally developed to treat chain
polymers [12] and recently adapted for helical symmetry
[6]. This method calculates the total energy and the elec-
tronic structure using local Gaussian-type orbitals within
a one-dimensional band-structure approach. The struc-
ture considered herein was generated by a planar ring of
ten carbon atoms with D5h symmetry arranged in five
pairs; the distance between interior members of adjacent
pairs was fixed at twice the nearest-neighbor separation

typical of fullerenes and other graphitic systems of 0.142
nm. The tubule structure was generated with a screw
operation having a twist of z rad and a translational shift
of 0.123 nm chosen to yield nearest-neighbor separations
between rings equal to the in-ring values. The one-
electron states are Bloch functions generated by repeated
application of the screw operation, and belong to irreduc-
ible representations of the screw symmetry group with a
dimensionless analog of the wave vector k. In the calcu-
lations we used twenty evenly spaced points in the one-
dimensional Brillouin zone ( —z(k ~ z) and a carbon
7s3p Gaussian basis set.

We depict our calculated valence band structure in Fig.
2. All of the operations of the C5,, point group commute
with the screw-symmetry space group. We thus label all
bands according to the four irreducible representations of
the Cs, , group: the rotationally invariant a~ and az repre-
sentations, and the doubly degenerate e~ and ez represen-
tations. For this lattice structure we find the tubule is a
metal, with the a

~
bands and a2 bands crossing at a posi-

FIG. 1. Depiction of fullerene tubule constructed from Clo
rings with D&I, symmetry.
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spectively) are then constructed from the rotationally in-
variant (under the C5 rotations) combinations of sym-
metric and antisymmetric sums of p orbitals for each of
the five pairs of nearest neighbors in the ten-carbon ring.
Given a constant matrix element Vo between all nearest-
neighbor carbon pairs both within and between rings, the
Hamiltonians for the a

~
and a2 bands can then be written

(within a constant carbon on-site term) as Ho+ and Ho,
respectively:

Ho~ =+ Vng[nl +(ct~ +)) cl +H.c.)),
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Wave vector X

FIG. 2. Local-density-functional valence band structure of a
fullerene tubule. The Fermi level sF is depicted with the dotted
line. I and X correspond to dimensionless "wave vector" coor-
dinate k of 0 and x, respectively.
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tion in the Brillouin zone roughly 0.69 of the width of the
half Brillouin zone from the origin. The Fermi level eF
coincides with this crossing. These states are analogous
to those we should obtain for a single sheet of graphite—generated by unrolling the tubule and repeating to gen-
erate a two-dimensional periodic structure —if we impose
Born-von Karmann boundary conditions over a width
equivalent to the circumference around the tubule for a
single axis direction in the graphitic system. Continuing
this analogy, we find that the ai and a2 states in the vi-

cinity of eF are predominantly p-orbital states aligned
with the local normal of the tubule surface, similar to the
x-like states in graphite. We obtain four states at the
Fermi level (a~ and a2 states at kF and —kF), which are
related to the four inequivalent (by translational symme-
try) states at aF found in two-dimensional graphite.

We find, in fact, that the ai and a2 bands near sF can
be well reproduced by a tight-binding model using only
states constructed from the set of p orbitals aligned nor-
mal to the tubule surface. The ai and a2 states associat-
ed with each ring I (denoted herein as ~aI) and ~a2), re-

where for Ho+ (Ho ) clt creates an electron of spin o in

the state ~a'~) (~a2)), and nl is the corresponding number
operator. The band energies are then given by s(k)
=+ Vo(1+2cosk). This model predicts a bandwidth in

each band of 4~ Vo~, total bandwidth of 6~Vs~, separation
of bands at the Brillouin zone edge of 2~ Vn~, and crossing
of the bands at k =2m/3. The Fermi level is pinned to the
crossing of the a

~
and a2 bands, with more complex treat-

ments (such as the LDF calculation) shifting the crossing
slightly from k =2m/3 in the Brillouin zone. Similar re-
sults can be obtained for analogous larger structures,
which for a structure constructed from rings with M car-
bon pairs (i.e., 2M carbon atoms per ring) can be gen-
erated with a helical twist angle of x/M radians. All such
structures will have bands crossing the Fermi level

equivalent to the a~ and a2 bands, leading to four states
at the Fermi level. Because these bands are of different
point-group symmetries, deformations which do not break
the symmetry of the lattice will not open a gap at the
Fermi level unless they are severe enough to shift the rel-
ative positions of the bands by several eV's. Using the
LDF bandwidth for the a~ band at sF of 9.6 eV (taking
into account the avoided crossing) we estimate an
effective hopping matrix element of ~V0~-2.4 eV. This
value is slightly less than the corresponding hopping ma-
trix elements found in polyacetylene systems of 2.5-3.0
eV, which is explained by the tubule curvature. We find

that all of the predictions of this tight-binding model are
in good agreement with our first-principles results, noting
that the a2 bandwidth in Fig. 2 is slightly lessened by
another avoided crossing with an a2 at higher energies
that is not included in the figure. In particular, we note
that sF—pinned at the crossing of the a~ and a2 bands
—crosses these bands almost exactly at the value of
k =2~/3 predicted by the tight-binding model.

Peierls [131 pointed out long ago that any one-
dimensional metal should break the initial translational
symmetry (his argument applies equally well to the
screw-symmetry group) to produce a gap at eF. The
Fermi-level crossing at k =2m/3 indicates that the sym-

metry breaking will be one that changes the repeat unit

from a single ten-carbon ring to a three-ring unit. A con-
ventional Kekule structure that breaks symmetry in this

way can be constructed from three ten-carbon rings in

each periodic unit cell: one ring with double bonds (a
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double-bond ring) between nearest-neighbor carbon pairs,
and two rings having singly bonded carbon pairs (single-
bond rings). The rings are then interconnected by single
bonds between single- and double-bond rings, and with

double bonds between adjacent single-bond rings. This
distortion not only opens a gap at eF but also satisfies the
local valence requirements of carbon —two single bonds
and one double bond attached to each carbon site in the
tubule. At some temperature, however, thermal effects
will be sufficient to diminish this bond distortion and
hence eliminate the gap at eF. We can estimate these

effects using mean-field techniques [14-17]for a Frohlich
Hamiltonian analogous to the Su-Schriefer-Heeger
(SSH) model for polyacetylene [18].

As is usual for conjugated systems, we assume that the
change in bond length, Bd, resulting from the formation
of double and single bonds leaves the average of a single-
and double-bond hopping matrix element Vo unchanged.
To first order in Bd, the nearest-neighbor matrix elements
are then V = Vp ~ t (where t = —a(8d ~, with a the
electron-lattice coupling constant), so that the distortion
leads to a perturbation of Ho—for the a[ and a2 bands
given by

2+
Hp „(= —tg n(3/+()~+n(3/+2)(y /l(3/+3) + $ [( 1) C(3/+ )Q(3/+yg+()~+H. c.]

I,cr m 0
(2)

with the same notation as in Eq. (1). The perturbation in

Eq. (2) opens a gap of 4t at eF in the tight-binding model
for both bands. Thus if t were comparable to the value
estimated for polyacetylene, then this gap would be
roughly 1-2 eV and the tubule would be a semiconductor.
However, the electron density of states per carbon at sF
driving this distortion is roughly one-fifth that of poly-
acetylene, while the elastic energy per carbon resisting
the distortion is a factor of 1.5 times larger in the tubule.
These differences lead us to expect that the tubule is not a
semiconductor at room temperature, but rather has a car-
rier density comparable to that of a good metal.

More explicitly, the electronic contribution per ten-
carbon ring to the free energy can be written (within an
unimportant constant for our tight-binding model) as

F,(
—(2//rP) ln [1+coshPe(k)]dk,

where P=l/k//T and e(k) is the band energy of either
the a~ or a2 band. To obtain F,~

we have used the
particle-hole symmetry of the two-band system, which
remains conserved in the presence of the distortion, to fix
the chemical potential at eF, chosen to equal zero in the
tight-binding model. We have also used the fact that the
perturbation conserves the C5,, point-group symmetry,
and thus introduces intraband but not interband coupling.
Using perturbation theory we can then show to first order
in k —kF that e(k) entering F,~

can be replaced by
e(k) =e/, = —[3Vp(k —2/r/3) +4t ]'/. Because we
seek an upper bound on t we approximate e(k) over the
half zone with this expression, which is accurate in the
neighborhood of cF and produces an enhanced energy
lowering for the distortion compared to that predicted us-

ing the exact dispersion relation. Next we add to F,~

(which favors the distortion) a lattice contribution per
ring (which resists the distortion) of 15Kt 2/2a2, where K
is an effective spring constant for distorting one carbon-
carbon bond. This lattice contribution is analogous to a
corresponding term in the traditional SSH model for
polyacetylene [18]. Finally, minimizing the resulting to-
tal expression with respect to t, we obtain a self-consistent

gap equation of the usual form:

8(t»» tanh(pe/, /2)
dk =1.

15mK~ o
(3)

Solving Eq. (3) for t in the limit P ~ yields a mean-

field gap at zero temperature,

8/r] Vp(
—Rf Vp(K

Eg =4t = exp
6

(4)

with R =15/r J3/16= 5, while solving this equation in the

limit t 0 yields a mean-field transition temperature

from a distorted insulator to a metallic state given by

k//T, =(e "/2tr)E~, where y is Euler's constant. This re-

sult for T,. represents an upper-bound estimate for the

thermal stability of the Peierls-distorted state, not only

because of our earlier approximations, but also because of
the neglect within the mean-field approximation of fluc-

tuations which will smear out any true phase transition in

one dimension.
For trans-polyacetylene, we note that the SSH model

[18] predicts Eg =(16[Vp[/e)exp( —/r)Vp)K/4a ), using

the above parameters. As we noted above, we find Vp for
the tubule slightly smaller than typically used for
polyacetylene, but of the same magnitude. Reasonable
values of the parameters for polyacetylene yield F~
= 1.5-2.0 eV, with a resulting mean-field transition tem-
perature [also given by k//T„=(e "/2/r)Fg] to a metallic
state well above both room temperature and the decom-
position temperature for the material. For the fullerene
tubule, however, we find that for a comparable ratio
~ Vp(K/a the much larger effective exponent factor
R =5»/r/4 leads to a mean-field transition temperature
orders of magnitude below room temperature, with esti-
mates based on the above model being less than 1 K. Be-
cause T, overestimates the thermal stability of the Peierls
distortion, this material should not require doping to
enhance conductivity at room temperature as in the
polyacetylene systems.

For graphite, the reason for low conductivity is the low
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carrier density, of the order of 10'" cm compared to
typical metallic carrier densities of —10 cm . From
the tight-binding model, we calculate a carrier
density for an array of parallel-packed tubules of n,
=843m~ Vo~a/h f), where a is the translation distance
for each screw operation and 0 is the cross section for
each tubule. Assuming a cross-sectional area of 1 nm,
we estimate the carrier density at —10 —10 cm . As
we eXpect the carrier mobility along the tubule axis to be
comparable to the high mobilities found in graphitic sys-
tems, we consequently expect a conductivity along the tu-
bule axis comparable to good metals. Analogous larger-
radius tubules would also have a room-temperature me-

tallic regime, although with decreasing carrier densities
resulting from larger eA'ective values of O.

These fullerene tubules as well as other analogous
structures of diA'erent diameter represent a conjugated
carbon network intermediate between the more well-

known polyacetylene and the graphitic systems, but with

a high conductivity as a result of the small diameter. We
have calculated its electronic structure using an all-

electron Gaussian-orbital based local-density-functional
approach. Using a Frohlich Hamiltonian for the elec-
tron-lattice interaction, we estimate that the mean-field
transition temperature from a Peierls-distorted regime to
a high-temperature metallic regime should be well below

room temperature, in contrast to the room-temperature
Peierls-distorted regime for polyacetylene. Compared to
other conjugated systems, the fullerene tubules con-
sidered herein would appear to have the advantages of a
carrier density similar to metals (as opposed to graphite)
and a simple metallic phase (i.e., zero band gap) at room

temperature (as opposed to polyacetylene), with a con-
comitant relatively high conductivity.
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