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Dynamics and Memory Effects in Rupture of Thermal Fuse Networks

Didier Sornette and Christian Vanneste

Laboratoire de Physique de la Matiere Condensee, Université de Nice-Sophia Antipolis,
Parc Valrose, 06034 Nice CEDEX, France
(Received 30 September 1991)

A simple dynamical generalization of the electrical random fuse model for rupture in random media is
introduced in which fuses are heated locally by a generalized Joule effect. When their temperature
reaches a given threshold, the fuses burn out irreversibly and become insulators. In one limit, the rup-
ture dynamics is spontaneously attracted to the critical state of the bond percolation model. In another
limit, it recovers the “static” random fuse model previously studied in the literature. In between these
two extremes, the existence of a novel dynamical memory effect produces a rich phenomenology of frac-
tal rupture patterns, which are sensitively dependent upon the input current.

PACS numbers: 64.60.Ht, 05.40.4j, 62.20.Mk

Rupture of random materials within a statistical phys-
ics framework has been studied intensively these last few
years and a partial classification of some different possi-
ble regimes has emerged [1,2]. Such an approach seems
unavoidable in order to tackle the important difficulties
underlying this field, stemming for instance from the
presence of many interacting defects, from the long-range
nature of electric or elastic Green functions, and from the
irreversible evolution of the rupture. As a consequence of
the extraordinary richness of the phenomenology of frac-
ture mechanics, a large variety of lattice models have
been defined, each model capturing to some degree a part
of a realistic situation. However, all these models have
one fundamental property in common, namely, that the
evolution of the rupture is quasistatic. Indeed, the evolu-
tion is obtained by solving the elastic or electric equations
and the first bond which fulfills the rupture criterion is
singled out and broken. Then, the sample process is
iterated and so on until a macroscopic fracture appears.
In these models, there is no dynamics but only an irrever-
sible process with no time scale. This is exactly the spirit
of the growth models such as DLA (diffusion-limited ag-
gregation), which describe the quasistatic irreversible
evolution of complex interfaces [3].

However, natural materials very rarely break down
without presenting time-dependent effects. The rupture
of a window screen by a stone, more generally any break-
ing of colliding objects, cracking under explosions, rup-
ture under fatigue, etc., are a few examples showing that
the time evolution of a system is most important in order
to describe its rupture adequately. How the dynamical
aspects of the rupture processes control the nature and
geometry of fracture is not understood in general. Time
evolution implies that the different elements of a system
might not find the time to relax to a steady state in a
finite time. For instance, if a bond breaks down before
complete relaxation, we should expect that the memory of
previous deformations and stresses might bring novel
effects on the evolution of the fracture process. Here, we
present a new simple statistical model of rupture which
encaptures some of these important dynamical and novel
memory effects. For the sake of simplicity and demon-

stration of the concepts, we restrict the study to a scalar
electrical rupture model. Inspired by the physics of a real
fuse which burns out by melting, the model consists in a
dynamical extension of the random fuse model [4] in
which the temperature T of a fuse of specific heat C,
resistance R, and current i/ obeys the equation

CdT/dt =Ri®*—aT , 1

where Ri® accounts for a generalized Joule heat source
and —aT describes the coupling to a thermal bath. The
definition of the model is completed by the rule that a
fuse burns out irreversibly when its temperature reaches
the temperature threshold 7, (chosen identical for all
fuses). After such a breakdown, we assume that the
current distribution in the remaining fuses adjusts itself
instantaneously. The dynamics is thus solely controlled
by the temperature evolution.

For random resistances with the same temperature
threshold 7, for rupture, we show that the quasistatic
random fuse model [4] is recovered in the limit b — + oo,
whereas the other extreme b— 0 corresponds exactly to
the percolation model. In the intermediate regime, the
competition between the two time scales T,/Ri® and a ~'
(taking C=1) produces a rich phenomenology of fractal
rupture patterns, which present sensitive dependences
upon the input current. In the limit of vanishing disorder
or near the network rupture threshold, the cracks undergo
branching instabilities and form dendritelike patterns.

Consider a 2D square lattice of unit mesh oriented at
45° with respect to the two borders a distance L/IN2
apart. Periodic boundary conditions are assumed in the
direction perpendicular to the two borders which act as
bus bars. We assume that the conductances G=R ~' of
the bonds are distributed according to a given probability
distribution P;(G), chosen in our computation to be uni-
form in the interval [1 —Ac/2,1+Ac/2] with Ao varying
from 0 to 2. At time r =0, a constant current / is sud-
dently applied and flows from one bus bar to the other.
The current per bond would thus be I/L in the absence of
resistance disorder. As in the quasistatic random fuse
model, the electrical voltages and currents are assumed to
have infinitely short response. We thus calculate the
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current distribution in the network, i.e., the current i, in
each bond, as for a static input current. We have used
both a relaxation method and the conjugate gradient
technique, using an error criterion £¢<10 "%, No sig-
nificant difference was found between the two numerical
schemes. Once the currents in each bond are known, it is
reported in Eq. (1), which gives the time evolution of the
nth fuse temperature 7,(¢) [see Eq. (2) below]. The first
rupture occurs at ¢ =t on the bond which first reaches
the temperature threshold 7,, chosen equal to unity for
all bonds. After the first fracture, which amounts to put-
ting its resistance equal to infinity, the currents in all
remaining bonds are calculated again, assuming that they
instantaneously reach their stationary values. This new
set of currents {i,(z;)} is injected back into the heat
equation (1), with the additional information that the
temperature attained by bond n at ¢, is T,(¢,). Iterating
the procedure again and again after each rupture and
noting ¢;, the time at which the ith rupture event occurs,
and {i,(¢;)} and {T,(¢;)} the corresponding sets of bond
currents and temperatures on all remaining bonds, we ob-
tain the following general time-dependent temperature
expression for the nth bond:

T,(t) =T, (t;)e """
+1{R, i U)1%/a} 1 —expl—a(t — 1)}, )

forti<t=<t;4+,if T,t) =< 1.

Note that the simplicity of the model stems from the
separation of the time evolution of the electrical and
thermal fields: The electric current distribution evolves
instantaneously under the thermal rupture of a new bond
and the thermal field changes continuously under the
fixed current distribution until the next rupture occurs.
This feature greatly simplifies the analysis and the nu-
merical computations. Furthermore, this may be of some
relevance to real material systems. Consider the rupture
of metals for instance. There is an analogy between the
thermal field in the random fuse network and the plastic
component of the metal deformation field. The plastic
deformation is indeed known to be preferentially localized
in regions of large elastic deformation, for instance in the
vicinity of crack tips. In particular, it is well known that
the theoretical » ~'/2 divergence of the stress at the tip of
a crack is smoothed out by the appearance of a plastic de-
formation localized near the crack tip. Thus, similarly to
the extension and deformation of the plastic region,
which is controlled by the value of the elastic stress, the
thermal field is controlled by the electric field in our mod-
el. Both the plastic deformation and our temperature
field present history-dependent properties. Furthermore,
the growth of a crack involves first the restructuring of
the plastic zone near the crack tip. Thus, the rupture is
controlled by the plastic field, similarly to what occurs in
our dynamical thermal model where the temperature con-
trols the fracture and evolution of the network topology.

Before presenting our original results, it is worth point-

ing out that the thermal fuse model contains as natural
limits two well-studied statistical models of rupture,
namely, the quasistatic random fuse model [4] for
b— + oo and the bond percolation model [5] for 56— 0.
When b becomes very large, the heating rate Ri® of the
bond which carries the largest current becomes much
larger than those of all other bonds. In this limit, only
the bond which carries the largest current is significantly
heated compared to the others and it reaches the temper-
ature threshold 7, first. Since this remains true at all
times, this limit 56— + oo corresponds to always burning
out the bond which carries the largest current. Forget-
ting the time dependence of this process [6], which here is
of no consequence for the geometry of the rupture, we
thus recover exactly in the limit b— + oo the quasistatic
random fuse model [4]. In the other limit, 56— 0, the
heating rates become independent of the current field and
the thermal field only depends on the resistance distribu-
tion. The largest resistances will reach the rupture
threshold 7, after a finite time whereas the smallest ones
will never burn out if their asymptotic temperature R/a is
smaller than 7,. Therefore, the successive bond break-
downs are independent random events solely controlled by
the distribution and spatial position of the electrical resis-
tances. When a continuous path of ruptured fuses ap-
pears, the rupture process stops since the global network
resistance becomes infinite. At this point, the distribution
and position of ruptured bonds is given exactly by the
bond percolation model at its critical point p=p.. The
rupture dynamics is spontaneously attracted to the criti-
cal state of the bond percolation model [5], thus provid-
ing a new example of self-organized criticality [7]. The
corresponding fraction ¢=1—p of absent bonds at
time ¢ is given by the fraction of the bonds which have
attained the rupture threshold 7,=1, namely, ¢
=[t°Pr(T,1)dT, where Pr(T,t) is the distribution
of the temperatures at time ¢ in the network. Pr(T,t)
is obtained by performing the change of variable
R— T(R,t), where T(R,t) is given by Eq. (2), in the in-
itial resistance distribution Pg(R):

Pr(T,t)
=all —exp(—at)] ~'Pr(all —exp(—ar)] ~'T).

Global rupture is reached when g attains the percolation
threshold g, =1—p. (=1 for a square lattice in two di-
mensions).

Let us now study the generic case 0 < b < + oo, Figure
1 presents typical examples of crack patterns at the end
of the rupture sequence for the same system (with b =2
and Ac=0.2) obtained by varying the applied current.
I, is the minimum current under which the network pre-
sents a macroscopic fracture. Three regimes can be dis-
tinguished.

(i) For I very close to I. [Fig. 1(a)], rupture is charac-
terized by the growth of two or four main connected
branches growing from a nucleating center, correspond-
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ing to the first bond breaking in the network. The rup-
ture threshold corresponds to the rupture of the resistance
which presents initially the largest Joule heating power.
As the quenched disorder decreases, the branches of the
crack become straighter while presenting sidebranching
instabilities. Decreasing the quenched disorder to very
small values or allowing for a small annealed noise on a
perfect network gives birth to cracks formed of four
branches on which many secondary branches of random
length have grown [6]. This corresponds to a selective
amplification of noisy fluctuations near the advancing tip
of the crack, similarly to a mechanism of sidebranching
which has been proposed in dendritic solidification [8].
(ii) For I> 1. [Fig. 1(c)], rupture occurs in two steps.
At the beginning of the rupture process, the progressive
deterioration is similar to a random bond dilution in
which the initial quenched disorder on the resistances
dominates the dynamics. At larger times, the dilution
process is followed by a regime characterized by correlat-
ed cluster growth and fusion events between cracks. In

FIG. |. Typical crack patterns at the final stage of rupture in
a square lattice of size 180x 180 tilted at 45°. The conduc-
tances are uniformly sampled in the interval [0.9,1.1]. The
three pictures correspond to exactly the same disorder realiza-
tion with, however, different applied currents: (a) Regime close
to the rupture threshold, 7 =1.=0.913; (b) intermediate re-
gime, / =1.000; (c) asymptotic regime, / =30 (>>1.).
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this regime, current enhancement and screening effects
become important as in case (i). The relative importance
of these two steps depends upon the disorder Ao and on
the exponent b. Increasing the disorder and decreasing b
favors the first uncorrelated random dilution regime. For
a given resistance disorder configuration, it can be proven
[6] that the ordered sequence of bond rupture and there-
fore the final crack pattern at the end of rupture do not
change in the limit of large input currents /. This well-
defined limit for the rupture process and final crack pat-
tern for large /s (see Fig. 2) is characterized by a depen-
dence of the global rupture time scaling as 1, ~7 ~". This
limit amounts to neglecting the term —aT in the right-
hand side of Eq. (1) which couples the bonds to a thermal
bath.

(iii) The intermediate case I, < I < + o shown in Fig.
1(b) corresponds to a crossover from the first regime
I'=1. to the last one />1[.. It is characterized by a re-
markable sensitivity with respect to the applied current.
This can be guessed from Fig. 1(b) where, in addition to
the main disconnecting crack, two large competing cracks
bear witness to the existence of the previous rupture pat-
tern which dominated in the first regime / = I, shown in
Fig. 1(a). We have observed repetitively that very small
variations of the applied current in the same system can
lead to a catastrophic change in the breaking pattern.
This can be tracked back to the existence of several large
competing cracks. This property is analogous to the dras-
tic alteration found on the best path in a random medium
which undergoes slow drifts [9]. However, the drift con-
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FIG. 2. “Growth” and *“capacity” fractal dimensions (see

text) in the case b =2 as a function of the total current normal-
ized to the threshold current 7o for the uniform network
(Ac=0). The data are presented for weak (Ac=0.1) and
strong (Ac=1.6) disorder. Intermediate values of the disorder
(Ac=0.2, Ac=0.4, Ac=0.8) exhibit identical behavior and
provide the same values of D, and D,. These results are ob-
tained by averaging over 20 to 30 disorder configurations for
each / and Ao, in systems of size L =80. The two horizontal
lines give the asymptotic values of the growth (Dy=1.11
+0.02) and capacity (D>=1.18 £0.02) dimensions obtained
for I/1o> 1.
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cerns here the input current in the same random network.

In addition to macroscopic rupture pattern alterations,
we have also observed a hierarchy of evolutions of the
crack patterns at smaller scales, as the applied current 7
is varied. Extending the proposed analogy with the prob-
lem of the best path in a random system, these observa-
tions suggest the existence of a hierarchical structure for
the main rupture path, with global attractive basins of
relatively wide extent in the I variable, which break into
smaller basins of attraction, corresponding to local read-
justments of the path of rupture. Work is in progress to
quantify these aspects. Note that these observations are
in qualitative agreement with the recently conjectured
correspondence [10] between the rupture pattern in the
quasistatic random fuse model (b— +o0) and the ran-
dom directed polymer problem. In our model, the ex-
istence of this wealth of behaviors and patterns relies on
the competition between the two characteristic time
scales 7,=T,/Ri® and 7,=a ', in the presence of
quenched disorder. When the heating time 7, is the sole
finite time constant (@ =0), we recover the regime > 1,
discussed above characterized by a complete lack of
dependence of the rupture process with respect to the ap-
plied current. When the two time scales 7, and 7, are
finite, a subtle additional memory effect appears whereby
a bond with an intermediate heating power may break
sooner than a bond which has first a lower heating rate
and a higher heating rate later on. Indeed, from Eq. (1),
the slope dT,,/dtI,i at the beginning ¢; of the (i+1)th
heating sequence of the nth resistance is R,[I,(t;)1°
—aT,(t;). Thus, the largest current does not lead neces-
sarily to the largest heating efficiency if the temperature
T.(t;) is already high, since then a large heat flux is
directed to the thermal bath. As a consequence, the bond
which carries the instantaneous largest current is not gen-
erally the one chosen for rupture at a given time, in con-
trast to the rule of the quasistatic random fuse model
(1,2,4].

Two different methods have been used for measuring
the self-similar structure of the cracks. The first method
computes a “growth” fractal dimension D, of the largest
crack, at different times during the rupture, by calculat-
ing the total number of bonds it contains as a function of
its projected length I, [respectively, /, and (/)"
along its principal growth direction (respectively, along
the normal to this direction and their geometrical mean).
The second method analyzes the macroscopic crack
which is finally obtained at the end of the rupture, by
measuring the number of broken bonds belonging to this
crack in a box of size /x/ as a function of / (“capacity”
fractal dimension D,). For systems of size L =80, the
capacity and *“growth” fractal dimensions are estimated
by a linear fit in a log-log plot over one and almost two
decades, respectively. The results are displayed in Fig. 2
for b=2. The two methods give similar results with devi-
ations which are, however, systematic, indicating, in a

manner similar to DLA growth processes, that perimeter
bonds on which the action is taking place are not charac-
terized by exactly the same scaling as the “dead” bonds
in the interior. For large currents, D, =1.11 £0.02 and
D,=1.18+0.02 (for 56=2) do not depend on the disor-
der. As the current decreases and approaches I., D, in-
creases up to the value 1.2 whereas D; exhibit variations
in the range [dnin,1.20] where 1.12 < dnin < 1.18 depends
on the disorder. Calculations have also been performed
for other b values, whose results are obtained by averag-
ing over 30 disorder configurations for each 7/ and Ao, in
systems of size L =80. For b <2, the fractal dimension
increases (D)>=1.3%0.1 for b=1, D,,=1.55 £0.05
for =0.5), which culminates at =0 where D>,
=1.88+0.02 is very close to the percolation value
2—pB/v=273/144. For b > 2, the fractal dimension de-
creases down to Dy =D;,=1 as found for ¥ =8. This re-
sult is to be compared with the value for the quasistatic
random fuse model [11]: D=1.1 +0.1.

A new dynamical model of statistical rupture in hetero-
geneous media has been introduced which incorporates a
time dynamics with novel memory effects. A wealth of
behaviors has been found which result from the competi-
tion and inter-relation between initial quenched disorder,
current enhancement effects, and memory effects.
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FIG. I. Typical crack patterns at the final stage of rupture in
a square lattice of size 180x180 tilted at 45°. The conduc-
tances are uniformly sampled in the interval [0.9,1.1]. The
three pictures correspond to exactly the same disorder realiza-
tion with, however, different applied currents: (a) Regime close
to the rupture threshold, /=1, =0.913; (b) intermediate re-
gime, I =1.000; (c) asymptotic regime, /=30 (>>1.).



