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Percolation and Fracture in Disordered Solids and Granular Media: Approach to a Fixed Point
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We argue that there exist universal fixed points (FPs) that classify the universality classes of fracture
processes in disordered media. As a system approaches its macroscopic failure point, the ratio of its elas-
tic moduli appears to approach a universal value, independent of microscopic features of the system
We suggest that there are two such FPs: one describes systems that are under a uniform external load
and in which fracture does not take place at random, but depends on the stress field in the system, while
the other describes systems in which fracture accumulates at random and is identical with the FPs of
elastic percolation networks. Experimental data on fractured rocks appear to support this.
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Failure processes [1] play a fundamental role in many
systems of industrial importance ranging from pressur-
ized nuclear reactors and aircraft structures to the propa-
gation of cracks in oil reservoirs and granular porous
media, and in disordered solids such as alloys, ceramics,
superconductors, and glasses. In the past few years,
several simple models have been introduced for both elec-
trical [2,3] and mechanical [4] failure of disordered
media. These models are based on random networks in

which each bond describes the system on a microscopic
level, with failure characteristics described by a few con-
trol parameters. One applies an external potential, strain
or stress, to the network and gradually increases it, as a
result of which the individual bonds break irreversibly in

a certain manner. Various properties of such failure pro-
cesses have recently been investigated [5-8], and have
been shown [8,9] to be capable of predicting several
features of failure phenomena observed in experiments.

In this paper, we address four questions which we be-
lieve are of fundamental importance to the failure of
disordered solids and granular porous media. (i) What is
the signature (or a distinct property) of a system that is

developing internal cracks and is close to its macroscopic
failure point? If such a signature does exist, it may help
one to detect and prevent the catastrophic failure of a
system. On the other hand, in some systems we would
like to make sure that macroscopic cracks are developed.
For example, in order to increase oil production artificial
fractures are created in oil reservoirs to increase the per-
meability of the system and, therefore, it is highly desir-
able to know whether such macroscopic fractures have
actually been created. (ii) If there does exist a signature
of a failing system, how universal is it? Does it depend
on the microscopic properties of the system or the dynam-
ics of failure and is material dependent'? (iii) In general,
the growth of cracks in a disordered system is a non-
equilibrium and nonlinear phenomenon. On the other
hand, static and linear properties of disordered systems
are usually modeled by percolation networks of resistors
or elastic bonds [10], in which the bonds are cut at ran
dom. Percolation phenomena represent second-order
phase transitions, whereas at least some of the fracture
phenomena modeled by the recent models [2-4] resemble

first-order phase transitions. Under certain experimental
conditions the accumulation of damage and the growth of
cracks can be essentially at random as in, e.g. , a system
which is under rapid thermal cycling. In such a situation,
a percolation process may be appropriate for describing
the damage process. On the other hand, in the discrete
models of mechanical breakdown [4-81, the failing sys-
tem is under an external uniform load (e.g. , stress or
strain), and the breakdown of a bond does not take place
at random, but depends on the stress or strain field
around it. Therefore, it is important to know the extent
of similarities between the properties of such networks
and those of a percolation network. If there are any simi-
larities between the two systems, then, percolation phe-
nomena [10], which are now well understood and much
easier to study, may help one to gain some insight about
fracture of disordered systems under uniform external
loads. (iv) How can one classify various fracture process-
es~ One hopes that there are only a finite number of
universality classes that contain most or all fracture pro-
cesses and their universal properties.

To provide at least partial answers to the above ques-
tions, we have studied fracture phenomena using the frac-
ture models introduced by Sahimi and Goddard [4]. We
consider an LxL triangular network in which every site
of the network is characterized by a displacement vector
u;, and nearest-neighbor sites are connected by springs
that can be stretched and bent. The case of a brittle ma-
terial is studied here for which a linear approximation is
valid up to a threshold defined below. The elastic energy
of the system is given by

H= —ge;,-[(u; —u;) R ]-'+~ pe;&e;t(60, ;t, )'-,
- (ij ) (jiI-&

where R;~ is a unit vector from i to j, and e;J the elastic
constant of the bond between i and j (assumed to be uni-

ty). Here (jik) indicates that the sum is over all triplets
in which the bonds ji and ik form an angle whose vertex
is at i, a, and P denote the stretching and bond-bending
force constants, respectively, and 80j;I,- represents the
change of angle between bonds ji and ik.

%e now introduce a threshold value l,. for the length of
a bond [4], which is selected according to the probability
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density function

(2)
3.0— ay. =o

0 =0.01

where we use y=0.80 and 0. These two values of y allow
us to investigate the effect of the statistical distribution of
I, on the possible universality of the properties that we

study. We use this power-law distribution because for
y) y„where y, =

4 is the critical value of y, such distri-
butions can give rise to unusual and nonuniversal phe-
nomena [11,12]. We then initiate the failure process by
applying an external strain on a fully connected network
and determining the nodal displacements u; by minimiz-

ing H with respect to u; for all nodes i of the network.
Two different methods have been used to model the
failure process. In the first method, we select that spring
for which the difference I —l, is maximum, where I is the
current length of the spring in the strained network, and
remove the spring from the system (break it). We call
this model 1. In the second method, we remove al/ the
bonds whose lengths have exceeded their thresholds. We
refer to this as model 2.

After a spring (a set of springs) is broken, we recalcu-
late the nodal displacements u; for the new configuration
of the network, select the next spring (set of springs) that
is to be broken, and so on. If the external strain is not
large enough to break any new spring, we gradually in-

crease it. This process continues until the network fails
macroscopically. We measure three properties of the net-
work. We first distribute the threshold values I, and
measure the elastic modulus Cll of the network during
the fracture process. We then use the same fully con-
nected network (i.e., with the same distributed values of
I„), and measure the shear modulus p of the network dur-

ing the fracture process. This is equivalent to using two
identical samples for measuring C]i and p. During both
measurements, we also monitor the force distribution
(FD) of the network, i.e., the distribution of the forces
that the unbroken springs of the network suffer [13]. The
results presented below are for L =90, for which we used
a large number of realizations and averaged the results.

In Fig. I we present the ratio r =Cll/p, as a function
of the fraction of unbroken springs, for various values of
P/a, using model I of fracture. The last points on these
curves represent Cl i/p right before the system fails ma-

croscopically. We refer to this as the incipient fracture
point (IFP). As can be seen, even though the initial
states of the systems are different, they all approach the
same value as the IFP is approached. Note that initially
r remains essentially constant (which is similar to a per-
colation system, see below), i.e., it is not sensitive to a few
cracks or even a collection of localized cracks. However,
as damage accumulates and the cracks grow, a turning
point (TP) appears and r changes drastically. Because
P/a=0 corresponds to a system in which only central
forces are present, Fig. 1 indicates that this behavior is
independent of the microscopic force laws of the system.
The behavior of the system for P/a =1 is particularly in-
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FIG. I. The ratio C~~jp vs the fraction of unbroken springs
with model 1 of fracture.

teresting. Initially, r remains essentially constant. How-

ever, as damage accumulates a TP appears beyond which
r decreases and reaches a minimum. But near the IFP, r
rises again and approaches the value at the IFP which ap-
pears to be the same for all values of P/a.

To check whether this behavior depends on the dynam-
ics of failure in systems that are under an external load,
or the distribution of the threshold values, similar simula-
tions with model 2 of fracture were carried out for y=O
and 0.8, the results of which are shown in Figs. 2 and 3.
Although for y& y, many transport properties of per-
colation networks show anomalous behavior [11,12] near
p„r appears to approach essentially the same value at
the IFP as that for y=O. It is clear that, within the error
bars, r appears to attain the same value in all cases as the
IFP is approached, although the geometry of the macro-
scopic fracture is very different in models 1 and 2, partic-
ularly for y=O and y=0.8. From Figs. 1-3, we may
conclude that for all values of y ( 1 and P/a, and regard-
less of the dynamics of fracture, one has a universal fixed
point

C i 1/p = I .25 . (3)

The appearance of a universal fixed point may mean
that in many disordered media in which fracture occurs
the approach of r to the IFP and its universal value can
be interpreted as the signature of a failing system. Al-
though Figs. 1-3 indicate that for certain values of P/a
one may have a nonmonotonic variation of r with the ac-
cumulated damage (which, from an experimental view,
makes the closeness of r to its universal value useless as
the signature of a failing system), for most real systems
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FIG. 2. The ratio C~~/p
with model 2 of fracture.
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here. From an experimental point of view, this can be
directly tested since

the San Diego Supercomputer Center.

v„/v, =(c„/q+ —,
' ) '", (4)

whel e Vp and V, are the velocities of the shear and
compressional waves in the medium, respectively. Sam-
monds et al. [25] fractured four samples of a sandstone at
four different confining pressures. Different confining
pressures result in different fracture patterns since they
control the closure of preexisting cracks and the nu-
cleation and growth of new microcracks. They also mea-
sured V„and V, during fracture. At the three lowest
confining pressures the corresponding fracture patterns
were found to be brittlelike, and from their results we find
that V„/V,, =1.14~0.04 at the [FP for all three frac-
tured sandstones. At the highest confining pressure the
fracture was ductilelike, and although the stress-strain di-
agram of such a system is not similar to that of brittle
fracture, their results indicated that V„/V, = 1.1, beyond
the point at which stress became independent of strain
(typical of ductile fracture). These data provide strong
experimental support for the existence of universal fixed
points at the IFP.

We thus propose that the value of r at the IFP can be
used to classify various universality classes of fracture
processes. Specifically, we propose that there are t~o dis-
tinct universality classes. One is for systems that are un-
der a uniform external load (stress or strain) in which the
growth of a crack at a point depends on the environment
around that point and, therefore, the damage accumula-
tion is trot random. Such systems are described by the
fixed point found here. The second one is for systems in
which damage accumulates essentially at random. Such
systems are described by the fixed point of elastic per-
colation networks at p, . Note that, unlike the values of
the critical exponents for the scaling of the external stress
with the size of the system [7,81 which are currently con-
troversial, the values of r for fracture and percolation
processes are very distinct. We do, however, need to
simulate three-dimensional systems to estimate Cll/p at
the IFP.
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