
VOLUME 68, NUMBER 5 PH YSICAL REVIEW LETTERS 3 FEBRUARY 1992

Influence of Time-Dependent Rates of Mass Transfer on the Kinetics of Domain Growth
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Although there is a growing consensus as to the universality of domain growth kinetics in quenched
systems, discrepancies remain among theory, experiments, and simulations. %e identify a major
discrepancy between the three —the time dependence of mass transfer kinetics. %e show that this
discrepancy can be resolved in Monte Carlo simulations of domain growth. Our results strengthen the
emerging consensus that systems having a nonconserved order parameter obey Lifschitz-Allen-Cahn
growth kinetics in the asymptotic scaling limit.

PACS numbers: 68.35.Fx, 61.70.Ng

Growth and ordering processes are abundant in nature,
underlying phenomena as diverse as snowflake and soot
formation, crystal growth, and the evolution of the
Universe. The search for universality and possible sub-
classifications in these apparently wide and varied phe-
nomena is a significant fundamental problem in non-
equilibrium statistical mechanics [1]. In thermally
quenched systems, the development of long-range order is

accomplished by the growth of ordered domains. It is

becoming increasingly evident that domain growth in

these systems exhibits universal behavior. That is, many
systems which conserve the order parameter conform to
the Lifschitz-Slyozov (LS) theory [2] of domain growth,
while systems having a nonconserved order parameter
generally exhibit Lifschitz-Allen-Cahn (LAC) [3] growth
kinetics. Ordering kinetics in these theories are described
by a power-law expression of the form (l(t))-(At)',
where (l(t)) is a characteristic length of a domain at time
t, A is a proportionality factor, and x is a growth ex-
ponent. In the LAC theory, x= &, while x=

3 in the
LS theory. Although the current understanding of
domain growth has emerged with considerable controver-

sy, these theories remain the most widely accepted
descriptions of domain growth.

The contribution of computer simulations to the under-
standing of ordering kinetics in thermally quenched sys-
tems has been significant. The essential physics of experi-
mental systems can be captured in Monte Carlo simula-
tions of model systems, which can be understood in great
detail. It has been well established, however, that the in-

terpretation of Monte Carlo simulations of domain
growth is fraught with subtleties. Finite-size eff'ects, poor
quality of random numbers, and the existence of ' initial
transients" have marred many conclusions in this field.
As a result, there is a disturbing disparity between the as-
sertion that the physics of domain growth are universal
and a host of contradicting Monte Carlo results. The
influences of finite-size effects [4-6] and inadequate ran-
dom numbers [6] have been addressed in sufficient detail
that it is possible to identify and alleviate these sources of
error in Monte Carlo simulations of domain growth. The

eA'ect of initial transients, however, has been understood,
heretofore, only qualitatively.

When a disordered system is quenched below its
phase-transition temperature, there is a time period dur-

ing which small domains form. Once domains have
formed, it is the assumption of the LAC theory that they
are self-similar and that growth should obey a power-law
scaling. Both simulations [7] and experiments [8] in sys-
tems with nonconserved order parameters have verified
that this time period is generally short compared to the
time scale of a typical domain-growth study. However,
although self-similarity is attained relatively quickly,
LAC scaling is not. In several Monte Carlo studies of
domain growth [9-11], low values of calculated growth
exponents have been attributed, retrospectively, to the
inAuence of initial transients. When simulations are run

on larger lattices and to longer times, the value of the
growth exponent increases [9,10]. This phenomenon has
been termed "crossover" [12]. Qualitatively, it is under-
stood that simulations must be run "long enough" that
asymptotic scaling is achieved. However, there has been
no quantitative means of discerning when the asymptotic
limit has been reached. In certain systems, the amount of
computational time required to reach the asymptotic re-
gime may be prohibitive. The possible inexactitude of re-
sults in these systems prevents a clear and decisive resolu-
tion of true asymptotic domain growth.

In this Letter, we identify the primary source of initial
transients in Monte Carlo simulations of domain growth
and we show that their inAuence can be quantified. We
demonstrate, in Monte Carlo simulations of two model
systems with nonconserved order parameters, that these
initial transients can be long lived and significant enough
to lead to an apparent growth law of the LS form when

the actual growth law is of the LAC form. We discuss
the relevance of our findings to the interpretation of ex-
perimental studies of domain growth and to the resolution
of other outstanding theoretical issues in this field.

In the LAC theory, the time scale of domain growth is

determined primarily by the rate of mass transfer in the
system. The rate of mass transfer is contained in the pro-
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portionality factor of the scaling relation and is assumed
to be constant and independent of time. Although this
assumption may be reasonable for the asymptotic stages
of domain growth, when the system is close to thermal

equilibrium, it is untenable for the early stages following
the quench. Instead, it is reasonable to expect a transient
decrease in the rate of mass transfer during the early
stages of domain growth. In these initial stages, when the
rate of mass transfer is decreasing with time, low growth
exponents will arise when scaling is measured with the as-
sumption that the rate of mass transfer is constant. This
transient decrease in the rate of mass transfer is the ori-
gin of the initial transients in domain growth and can be
demonstrated in a Monte Carlo simulation.

We consider a model of a two-dimensional chemi-
sorbed overlayer in which mass transfer is accomplished

by surface diffusion. Specifically, our model is a two-
dimensional square-lattice gas with equal and repulsive
nearest- and next-nearest-neighbor interactions. At a
fractional coverage of O= 2, this system undergoes an

order-disorder phase transition below a critical tempera-
ture of kaT„=0.525$ [13t, where p is the lateral interac-
tion strength, to a ground state having a fourfold-
degenerate (2& 1) superstructure. Although the order
parameter in this system is nonconserved (indicating,
from theory, LAC growth), there has been controversy as
to whether LAC or LS growth kinetics exist. In previous
Monte Carlo studies of this system, growth exponents of
x =

2 were observed when occupancy exchange was ac-
complished via Glauber dynamics [5], an algorithm al-
lowing both nearest- and next-nearest-neighbor exchange
[12], and when exchange was accomplished by simulated
precursor-mediated surface diffusion [101. Growth ex-
ponents close to —,

' were observed in a Monte Carlo mod-

el utilizing Kawasaki dynamics [5] to accomplish
nearest-neighbor exchange and a model incorporating
proper barrier-crossing dynamics [14]. A possible experi-
rnental analog of this lattice-gas system is the low-

temperature adsorption of atomic oxygen on W(110) at a
fractional surface coverage, 0=

2 [Sl. In experimental
low-energy electron-diffraction studies [8] of domain
growth in this system, growth exponents consistent with
the LS theory have been measured.

At low temperatures, below the order-disorder phase-
transition temperature, adsorption is localized, and it is
likely that surface diffusion occurs through adatom "hop-
ping.

" We consider two models of adatom hopping which
are possible mechanisms of surface diffusion for chemi-
sorbed species influenced by adsorbate lateral interactions
[14,15]. In the first of these, we simulate vacancy-
mediated surface diffusion, in which the exchange of
vacant-occupied, nearest-neighbor sites is taken to be
representative of an event of thermally activated barrier
crossing. Vacancy-mediated diffusion was modeled with
seven rates given by

—Eb (i )/k g T 1= 3, . . . , 3,

where Eb(i) =E,, 0+i&/2 is the activation barrier for the
diffusion of a chemisorbed particle whose number of
neighbors changes by i upon relocation. In a second rnod-

el, we simulate precursor-mediated diffusion [10]. In this
mechanism, a chemisorbed particle is thermally excited
into a short-lived physically adsorbed state, in which it
executes a series of nearest-neighbor hops over both va-
cant and occupied lattice sites before deexciting into a va-
cant site. The dynamics of precursor-mediated surface
diffusion were modeled by eleven time scales of which
nine characterize the excitation rates of a chemisorbed
species to the physically adsorbed state:

—E,(j &]kqT
iex,j ~J,ex e (2)

where E,(j)=E„o jp is —the activation energy to excite
a particle with j neighbors. In addition, there are two
time scales, one characterizing the deexcitation rate from
the physically adsorbed state to the chemisorbed state,
rd, „'=vid,„e "" ', and the other characterizing the
rate of migration of a physically adsorbed precursor,
E ~&g 4 vl[ e " ' . Since these physically adsorbed
species are short lived, their concentration is low and
their mutual interaction can be omitted.

We simulated domain growth with a dynamical Monte
Carlo algorithm designed to maintain correctly the pas-
sage of real time [16] for these mechanisms. Our simula-
tion algorithm is essentially the same as the "N-fold way"
algorithm [17] except that, on trial i, time is incremented
by r; utilizing the mean interevent time in a collection of
superimposed Poisson processes, given by [16]

(3)

Here mk is the number of particles having a rate rk

(=rP), f=4 for vacancy-mediated diffusion, and f=6
for the precursor mechanism. The average rate of ada-
tom hopping on trial i, I;, is given by

1

Z, mkrk,
ON

(4)

where N is the number of sites in the system. It is evi-
dent, as the systems evolve from a high to a low energy,
that the rate of adatom hopping must decrease [cf. Eqs.
(1) and (2)]. To study this decrease, we utilized a second
method for incrementing time —the "uniform interevent
step" (UIS). During a simulation run, time was incre-
mented, upon the successful execution of an event, in

both "real-time" units [i.e., as given by Eq. (3)], and in

units of UIS, where 1 UIS=1/ON. By incrementing time
in UIS and only upon the realization of an event, we
simulate a diffusion coefficient which is constant and in-
dependent of time. Thus, we obtain two sets of results
from the same simulation: a set which is consistent with
a reasonable experimental study of domain growth (real-
time increments), and a set which is strictly consistent
with the assumption of both the LS and LAC theories
that the rate of mass transfer is constant and independent
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FIG. 1. Plots of the average domain size,
tice constant, A. , vs time, in units of UIS,
mediated and precursor-mediated diffusion.
of 2 are included for comparison.

in units of the lat-
for both vacancy-
Lines with slopes

FIG. 2. A plot of the average domain size, in units of the lat-
tice constant, A. , vs real time, in units of v, for both
precursor-mediated and vacancy-mediated diffusion. Lines with
slopes of 3 and 2 are included for comparison.

of time (UIS increment). The relationship between a
UIS on trial i, U;, and a real-time increment is U; =I; r;,
or, in the continuum limit, dU=I (t)dt. The time depen-
dence of the rate of adatom hopping can thus be obtained
from a plot of the derivative of UIS time with respect to
real time as a function of real time.

Relevant parameters in these models are the activation
energies and preexponential factors, which were chosen to
be E„o=8&, E,, o=5.5&, Ed,„=&=E;s, and v=v~,.„= v& d,„=vil. %e report here the results of simulations
that were run at a temperature of kttT=0. 1&. A more
detailed study of the effects of temperature will be report-
ed elsewhere [18]. For each mechanism, 15 to 20 simula-
tions were conducted on initially random lattices of 350
(vacancy mechanism) and 512 (precursor mechanism)
sites with periodic boundary conditions. As will be dis-
cussed elsewhere [18], we ascertained that the results re-
ported here were not influenced by finite-size effects or
inadequately random numbers.

Figure 1 shows the average linear dimension of a
domain, (l), as a function of UIS time U for representa-
tive results of all runs for both the vacancy and precursor
mechanisms. It can be seen in Fig. 1 that, when the rate
of adatom hopping is modeled as being independent of
time, domain growth is consistent with the LAC theory
for both mechanisms. However, it would appear from ex-
amination of Fig. 2, which shows (i) as a function of real
time, that precursor-mediated domain growth is con-
sistent with the LAC theory at long times, while the va-
cancy mechanism leads to LS growth. The apparently
low growth exponent found with the vacancy mechanism
arises from the time dependence of the hopping rate. The
simulated hopping rate as a function of time is shown in

Fig. 3 for both mechanisms. It can be seen in Fig. 3 that,
while the hopping rate relaxes to an apparently constant
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FIG. 3. A plot of dUldt [=I (t)l, in units of v, vs t, in units
of v '„ for both precursor-mediated and vacancy-mediated
diffusion.

value for the precursor mechanism, it is continually de-
creasing with vacancy-mediated diffusion. Strictly speak-
ing, I (t) will continually decrease in both systems until
thermal equilibrium is achieved because it is only at equi-
librium that a static situation is maintained. However,
Fig. 3 indicates that it is possible that I (t) changes very
slowly in the late stages of growth and is effectively con-
stant. Figures 1-3 show, for the precursor mechanism,
that when this occurs, the asymptotic regime is reached
and domain growth is consistent with the LAC theory.

The phenomenon of relaxation should be a general one
in quenched systems and not unique to this study. Since
our model includes the essential features of an experi-
mental system, we expect that a similar decrease in the
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rate of adatom hopping will occur in experimental sys-
terns, where low growth exponents have been measured
[8]. A time dependence of simulated mass transfer
should also be present in other Monte Carlo studies of
domain growth. Time in most of these studies is rnea-
sured in Monte Carlo steps, or attempted transitions.
Hence, the number of attempted transitions between two
successful events defines the time scale. Initially, there
will be more successful transitions per attempt than in the
final stages of domain growth because transition proba-
bilities must satisfy the detailed-balance criterion for
thermal equilibrium, which links them to the energy of
the system. This general phenomenon has been noted by
others [5,17] because conventional Monte Carlo algo-
rithms proceed very slowly in the late stages of domain
growth compared to the early stages. We have shown
that this relaxation should be interpreted as time-
dependent mass transfer and that it is inconsistent with
the LAC theory.

In summary, we have clarified the primary source of
"initial transients" in domain growth and shown that
these can be quantified in Monte Carlo simulations. Our
uniform interevent step methodology proved to be ex-
tremely useful in this regard. We believe that this meth-
odology will have many useful future applications [18]
because it removes a significant impediment to the inter-
pretation of Monte Carlo simulations. Perhaps it is final-

ly possible to attain a unified consensus as to the univer-
sality of domain growth.
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