
VOLUME 68, NUMBER 5 P H YSICAL R EV I EW LETTERS 3 FEBRUARY 1992

Continuum Damping of High-Mode-Number Toroidal Alfven Waves
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An asymptotic theory is developed to determine the continuum damping of short-wavelength toroidal

Alfven eigenmodes, which is essential for ascertaining thresholds for alpha-particle-driven instability in

ignited tokamaks.
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Magnetic fusion research has finally reached the point

at which large-scale thermonuclear burning experiments
can be undertaken. Thus it is essential to think about
novel physics features that may arise from the presence of
large numbers of fusion-product alpha particles whose

speeds are greater than the Alfven speed vA =Bp/
(4(rp)' . Some effects have already been seen from

superthermal fast ions produced by neutral beams or rf
heating [1,2]. It has been pointed out [3-6] that toroidal

coupling of the alphas to the Alfven wave might lead to
instability and possible diffusive loss of the alpha parti-
cles. A principal uncertainty in estimating the critical
threshold for the instability lies in calculating the damp-

ing rate of the Alfven waves. In a sheared magnetic field

these waves are highly localized at the surface ~=k~[v&
and strongly damped in most cases. An exception occurs
for the so-called toroidal Alfven eigenmodes (TAE) [7]
where, due to the periodic nature of the toroidal field,

gaps can arise in the continuum frequency spectrum of
localized modes, within which discrete modes (undamped
in lowest order) exist and can be alpha-particle destabi-

lized. Since the destabilization is weak, it is also neces-

sary to calculate the damping with some precision.
Within the ideal MHD equations one can describe damp-

ing independent of the detailed dissipation mechanism

[8-10]. The purpose of this Letter is to present a de-

tailed asymptotic linear theory for the damping of short-

wavelength TAE modes in a large-aspect-ratio tokamak.
The continuum damping of high-n TAE modes has also

been analytically studied recently [10] by means of the

ballooning representation, in the low-shear limit. These
results resemble ours, although the scaling with mode

number reported in Ref. [101 is different.
We limit ourselves here to nearly circular equilibria

and assume small inverse aspect ratio r/R, low P, and

high average poloidal mode number mp (so d/dr&) 1/r

while mpe is finite).
The frequency of a linearized wave is determined from

the stationarity of the Lagrangian:

magnetic energy f d r[V(b. V@)1
kinetic energy 4rrfd3r p(V+) 2/B2

In Eq. (1), & is the wave electrostatic potential, and b is

a unit vector along the unperturbed field, Bb =B~p+ Bg8.
Because of the equilibrium toroidal symmetry, we expand

@=exp[i(np —tot)]+„,tt„t, (r)e '"' and, by varying Eq.
(I) with respect to tlat„„arrive at the mode equations valid

to first order in e:

d a( p daunt
llm

dr vA

fPl N
2 2

k llm 4'nr
r v~

1 +6gI —(x —(+1)'
dx 4 dx

1 1——(x —l+ I ) p( —t+ — =0,
2 4 4 dx2

(4)

where x =nq(r) —mp, s =d(lnq)/d(lnr), and g(=gp
+2l/mpe, with e=e[8ln(q/vz)/1)lnq], -t,, The coupling
of the I and I + 1 harmonics near rI+ ], where

q(r(+t) =(mp+l+ ~ )/n, is also governed by Eqs. (3)
and (4), with l I+1. Near a singular layer (say,

+. '""'+ '"'- =0. (2)
2 d- d

Vg dr

In Eq. (2), k~~„, =(1/R)[n —m/q(r)] with R and r the
major and minor radii of the torus, and q(r) =rBt/RB((
The toroidal coupling factor is e=crr/R((1, where the
value of o depends on the details of the equilibrium, e.g. ,
tT= —, for a low-beta, Shafranov-shifted circular equilib-
rium [91. In the cylindrical limit (e 0), Eq. (2) has a
singularity at the surface m =k]]„,v~, which may be regu-
larized by nonzero e. Since the toroidal coupling is im-
portant only near the singularity, it is retained only in the
highest-order derivatives of p + t.

The essence of the TAE is that, for to =v~/2Rq,
modes mp —

1 and mp are both resonant at the point
r =r p, where q(rp) = (mp —

2 )/n. We write to'
=[ vA(r )p 2/Rq(r )p] /(I —egp), where gp represents the
complex shift of the eigenfrequency, and introduce
m =mp+l, with l((mp. Expanding Eq. (2) about the
point r(, where q(r() =(mp+l & )/n and where only the
coupling of the I and I —l harmonics is important, we ob-
tain

1+eg( 2 dtt(

dx 4 dx

2—,——(x —l) tt(+—I 1 2 e d tt'( —
) =0,

$2 4 4 dx2
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x —i= ——,
' ) where toroidal coupling is important, we

find

d
dy

&g( d(/(( (—
4 dy 4 dy

The integration constants C( and C( —
l are the values of

yp( and yp( l away from the singular point. While yp' is

constant across the boundary, 4)( and p( —
l are discontinu-

ous across the boundary layer of width s/4, with jumps
given by 6(/((= f: (/((dy =(r(C( (P(+C(aq) and h(//( (—
= —(r(C(- l a(+ C(p(), with a( = —g/(1 —

g( ) '/ and

p(=a//g(. The branch of the square root is to be deter-
mined from the causality requirement that if n(„)0 all

functions of g are analytic in the upper half plane. Hence
along the real axis the square root is positive for lgl (1
and is —i(g/Ig I) (g —1) ' for lgl ) 1, manifesting
damping. Branch cuts are taken from g( = ~ 1 to —i ~.

We must ensure that all harmonics ((1( vanish as
x(=x —I ~. Except near the singularities at x(

the harmonics obey Eq. (4) with a=0. Thus,
near the singularities, p( —(lnlx( —

& I+A)C(, where 6
takes on various values depending on boundary condi-

r

d s d4'( ( — &g(+ +y
dy 4 dy 4 dy

with y =x —i+ —,
' . For p( —=dp(/dy we obtain

(/((
= AC( ——,

' s(c( &+g(C()]/[y + —,', s (1 —
g( )], (6a)

tll —l 4 C(-(+ 4 s(C(+g(C( ()]/&-y '+
16 s (1 gl )] .

(6b)

tions. Three characteristic values of A are (a) A (s), the
value at x( &

4 for the solution well behaved as

Ix(l ee; (b) h, (s), the value at x( ~ —,
' for the solution

that is symmetric about x(=0, i.e., C/(2 ) =C/( —
2 ),

where we denote C/(~ 2 ) =C(—,and (c) A=A, (s) for
the antisymmetric solution, with C( = —C(

We now trace the construction of p(. For x( + —
—,', we

must have l(1(=C( (lnlx( ——,
' I+5 ). For x(~ —

—,', the

jump relationship gives

(/((=C( (»lx(' —-'I+~-+«(+/rP(C(+ l/C( ).
Since p( can also be expressed as a superposition of sym-
metric and antisymmetric solutions, we have

)l.(c( (ill lxl 4 I+4 )

+(1 —X()c( (lnlx(' —
—,
' I+a, )

for x(+ —2. Hence,

+«(+(rp(C(+—l/C( =A(h., +(1 —X()6, .

Further, for x( S —,', we have

(//(=C(+(inl 4
—x( I+()(& (1 .~()a, ]/(2X( 1)],

with C(+ =(2X( —1)C( . Finally we must ensure after
the jump at x( =

& that h, =h, ; thus,

Solving for A, ( after eliminating the C coefficients, we
obtain our basic recursion relationship between the C+

TABLE I. Values of the 6 and 8 parameters, the normalized complex frequency gete' of Eq. (8), and the 6
and H + functions in Eqs. (14) and (l 5), as functions of the shear s.

small s
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
?.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

xs/4
.2605
.3831
.5392
.7326
.9650
1.2369
1.5483
1.8993
2.7193
3.6959
4.8281
6.1153
7.5570
9.1529
10.9027
12.8062
14.8632
17.0736

large s 6s /x

—exp( —1/s)
-.0621
-.1669
-.3206
-.5190
-.7594

-1.0405
-1.3613
-1.7213
-2.5578
-3.5486
-4.6929
-5.9905
-7.4413
-9.0449
-10.8016
-12.7111
-14.7735
-16.9887

—1+ x's /8
-.8740
-.7553
-.6065
-.4620
-.3438
-.2532
—.1835
-.1282
—.0445
.0175
.0662
.1059
.1389
.1669
.1910
.2118
.2301
.2462

—(16/xs) exp( —2/s)
-.00329
—.02797
—.10238
-.2320
-

~ 3968
-.5761
-.7586
-.9404
-1.298
-1.648
-1.993
-2.334
-2.671
-3.007
-3.340
-3.671
-4.001
-4.330

—sx/2

(s/2)'/ x /

.1366

.1810
~ 2337
.2967
.3712
.4585
.5594
.6747
.9520
1.2970
1.7161
2.2154
2.8010
3.4787
4.2544
5.1336
6.1220
7.2250

4~3/'2

2/s
4.515
2.467
1.270
.6250
.3072
.1560

.08320

.04667

.01686
709 x 10
3.35 x 10
1.73 x 10 3

9.58 x 10 4

5.63 x 10 4

3.47 x 10
2.22 x 10 4

1.47 x 10 4

1.00 x 10 4

x2/(16 35/2 sl1/2)

x' s/8
.09512
.07606
.05844
.04472
.03455
.02705
.02150
.01733
.01169

8.24 x 10 3

6.02 x 10
4.53 x 10
3.49 x 10 3

2.75 x 10 3

2.20 x 10 3

1.79 x 10 3

1.48 x 10 3

1.23 x 10 3

1

2/l S
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coefficients (henceforth we drop the superscript), the damping expected at finite mp~.

We turn now to the interesting asymptotic case 10
"))l. In this limit the coefficients in Eq. 7 vary only

slightly with l and we employ a finite-diAerence varian o
WKB theory. We write Eq. (7) in the form C((X~+~
+ Y() =C(—

i W(+C(+~ W(+i, where the subscripts on I,
V and W indicate the dependence on l arising from g(
and hence a( and P(. Letting

/ / ~/+ t/2

C( =+QJ =exp+In(QJ ) = exp dl'lng(l') (9)

and then expanding in orders of g'=dg/dl =2/mps with

Q=gp+Qig', we have

X(+ Y(gp(l)+
gp I W(

P(~ P(+i~
( )=~(- i +C(+]

h, + a( h, +a(+ )

We have defined A(s) =(I/2(r)[26 —(A, +A, )] and

&(s) =(5, —b„)/2(r, and their values are shown in Table
I. Note that 5 &0, d, & 0, and 5 & (3,(. The eigenvalue

p must be determined by the requirement that a solution

t Eq. (7) can be found for which C( 0 as (I(
Note that if gp is an eigenvalue, then gp+2j/mpi wit j
any integer will also be an eigenvalue. Our principal in-

terest is thus in the imaginary part of gp.
For given s and mps, Eq. (7) may be solved numerical-

1 . It can also be solved analytically in two asymptotic
limits. First consider the case mps«1. Then all g( ex-

cept gp will be large and for IAO, a( = —I, P( =0. Then

Eq. (7) is solved with only Cp and C i nonzero, yielding

2

(10)
Qi X' —QpW' —Qt'iW

Qo W(go —I/go)

with the primes denoting differentiation with respect to g.
Equation (10) is solved to find Qp=f (f —

1
—'~ with

f= [2g(Z+ (I —E'+~') (I —g(') '"]/2(g .

pIq -q~,'

(glSSi PAT i VE ~
—— E VA.'0E SCE N T -------~

9o

toroidal coupling permtts the broad e
lobal-type mode. In the region where (f(l)( (1, the ad-

jacent harmonics have nearly equal amplituded s and shift-
ed phase; i.e., for C(icos(il(), C(~ i icos(l((~ 0(), with

cos8( f(l) and iI( the phase. This "wavelike" pattern
~exists in the region (mos/2)(g ——gp) & x & (m ps/)2( g+

), h f( ~ ) = ~ 1. Outside of this region, the
functions C( are evanescent, with C(+i/C(=exp T- 0(
where the ~ signs correspond to g & g+ and g (g, re-

spectively, and cosh8(=(f(l)(. Since (g~ ( & I, the dissi-

pa iont on due to the continuum resonances at g =1 occurs
where the mode amplitudes have exponentially decrease
from their level in the wavelike region. Therefore, the

l

qo )

n(q-q )

FIG. 1. Schematic plots of the toroidal shear-Alfven cont&nu-

um resonance curves g x,P'{ I) and of several TAE harmonics

i(!((x) and their global envelope, as functions of radial position

x =n(q —qp) with qo=mo/n.
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1 y(p)

foal p8 p 1 +y F if( & 1 we have (gp( =1, representing an oscillatingor ~~, we

(g) ives e avior o eb h
' f the C whereas for (f( & 1, as occurs for

( (-I ( Z&(g) th oI to th t d (I(
ho . Th Q b fo dfo E. (10)Imgp are sho n i a I an pro i pp

[g(
—A(I — ') ' ']exp[f 'ln[f —(f' —1) '(']dg/g'

{ 2
I ) i(4 [I +~(I 2) (2[f {f

with I a normalizing constant. In the oscillating region
fnvelOPe Of P

and the usual WKB joining condition applies.
To explain the global structure of the TAE mode, we

show in Fig. 1 a schematic of the toroidal shear-Alfven
"'Ix I) = —(2I/mps)continuum resonance curves, gp &x, .=

~ [1+16(x—I ——' ) /e ] ' as a function of radial posi-

l ~ rr! 6' / 'tion x nxq —qp, oi ( — ), for a succession of poloidal armoni

,~n. The harmonicnumbers m=mp+l, where qp —mp, ~ .
~ Di SSiPAT I V E-~,((x) will have a dissipative response where continuum

res res H wever in the region
where g( &, wi g( —

p( I, 'th g =g +2I/mpi, no such resonance
occurs. Each individual harmonic has only a limited ra-

dial extent, being local&zed where, x —
~

—l ~ & —'. However,
xcitation of a
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damping decrement should be proportional to the tunneling factors exp[ —2j s (dg/g') 8(].
In order to calculate the damping rate we construct a quadratic form from Eq. (7):

+ 2

l =Z
I
c(l'

I
'

6+al+I

2—2~ +Zlc(l'
6,+ a(

—g (C( C(+ ) +C(+ ( C()sic Ijl + I ~
I 5+aiy~

=0 (12)

For real g, I will have an imaginary part arising from a and P for lgl ) 1. Moreover, for large mac where C( decays
rapidly as lgl increases, the main contribution to ImI will come from lgl close to 1. The damping rate will be deter-
mined from the relation (Img)(dI/dg)+ImI=0. Using Eqs. (10)-(12),we finally obtain an analytic expression for the
damping rate y Imago when mo~)) 1:

Img" 2y/acou= — [exp( mp(c—lH+)+exp( —m(ilalH-)],G(s)
(moldl)' ' (»)

with

and

1+g2 g2 P2
G(s) = z, ln —

1

8 (r(& —~)'
1/2 ' —3/2

(14)

H (s) =cosh '8 — + [F(k,g) —E(k,g)] ~B(B —1) '
lA A

g 2+82 g 2+82 (g 2 +8 2 ) i /2
[K(k) -E(k)]. (15)

Here A (1+3 —4 )/2h, 8 —4/d, k =(& +8
—I)/(Az+82), /=sin '[lAl/(A +8 —1)'
F(k,g) and E(k,p) are the usual elliptic integrals, with

K(k) F(k, (r/2) and E(k) =E(k, (r/2). Values of G(s)
and H ~ (s) are shown in Table I.

An interpolation of Eqs. (8) and (13) is

(Img) ' = (Img(( ) ) '+ (Img") '. Comparison with

the numerical solution of Eq. (7) shows the following

features:
(I ) The analytic values asymptote satisfactorily to the

numerical results at large mo~. Although the large-mo~
analysis assumes a large exponentially decaying region, it
seems to remain valid even for moderate and small moi,
where typically the analytic damping rate may be 30%
higher than the numerical values.

(2) The numerical results show considerable oscillation
in the damping rate as (nut is varied, which may be ex-

pected from the discrete nature of the sum for ImI from

Eq. (12). At smaller s and mac these oscillations are
enhanced because in the numerics the sign of (g —1) '/

is discontinuously changed when crossing the branch cuts.
To study whether interesting contributions to wave evolu-

tion arise from the branch cuts, it is necessary to resolve
them by introducing finite Larmor radius and resistive
effects, a subject to be considered in a subsequent paper.

Although our results are not valid if the overall eigen-
mode extends beyond the region where the linear expan-
sion for q (r)/vz(r) is satisfied, the WKB procedure is

easily generalized to treat this case.
Finally, we may draw three general conclusions.

Damping is very weak at sinall shear (s (0.5), which

makes instability likely in the center of the discharge.
(Estimates of the TAE growth rate due to fast ion reso-
nance are given, e.g., in Refs. [5] and [9].) Next, damp-
ing decreases strongly with (r(0 (and hence n); however,
the alpha-drive dependence with m can be diminished due
to finite-Larmor-radius and banana effects [11], while
other nonideal damping, e.g., due to the parallel electric

field, will increase with m. Thus intermediate values such
as those seen in recent experimental observations of the
TAE instability [1,2] are most dangerous. Finally,
profiles with large a=a[c)ln(q/v~)/t]lnq] ' should be
susceptible to alpha-particle-driven instability and
alpha-particle loss since the mode extends for large radial
distances and the damping is small.
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