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An asymptotic theory is developed to determine the continuum damping of short-wavelength toroidal
Alfvén eigenmodes, which is essential for ascertaining thresholds for alpha-particle-driven instability in

ignited tokamaks.
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Magnetic fusion research has finally reached the point
at which large-scale thermonuclear burning experiments
can be undertaken. Thus it is essential to think about
novel physics features that may arise from the presence of
large numbers of fusion-product alpha particles whose
speeds are greater than the Alfvén speed v4 =B/
(47p)'%. Some effects have already been seen from
superthermal fast ions produced by neutral beams or rf
heating [1,2]. It has been pointed out [3-6] that toroidal
coupling of the alphas to the Alfvén wave might lead to
instability and possible diffusive loss of the alpha parti-
cles. A principal uncertainty in estimating the critical
threshold for the instability lies in calculating the damp-
ing rate of the Alfvén waves. In a sheared magnetic field
these waves are highly localized at the surface w =k 4
and strongly damped in most cases. An exception occurs
for the so-called toroidal Alfvén eigenmodes (TAE) [7]
where, due to the periodic nature of the toroidal field,
gaps can arise in the continuum frequency spectrum of
localized modes, within which discrete modes (undamped
in lowest order) exist and can be alpha-particle destabi-
lized. Since the destabilization is weak, it is also neces-
sary to calculate the damping with some precision.
Within the ideal MHD equations one can describe damp-
ing independent of the detailed dissipation mechanism
[8-10]. The purpose of this Letter is to present a de-
tailed asymptotic linear theory for the damping of short-
wavelength TAE modes in a large-aspect-ratio tokamak.

The continuum damping of high-n TAE modes has also
been analytically studied recently [10] by means of the
ballooning representation, in the low-shear limit. These
results resemble ours, although the scaling with mode
number reported in Ref. [10] is different.

We limit ourselves here to nearly circular equilibria
and assume small inverse aspect ratio r/R, low B, and
high average poloidal mode number mq (so d/dr>1/r
while moe is finite).

The frequency of a linearized wave is determined from
the stationarity of the Lagrangian:

2 = magnetic energy _ Jd3rV(b-V)]? )
kineticenergy  4zfd3rp(V®)¥/B?’
In Eq. (1), @ is the wave electrostatic potential, and b is

a unit vector along the unperturbed field, Bb =Bw¢+Bgé.
Because of the equilibrium toroidal symmetry, we expand

d=expli(ne—wt)1X,,0m(r)e ~™° and, by varying Eq.
(1) with respect to ¢,,, arrive at the mode equations valid
to first order in &
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In Eq. (2), kym=(/R)In—m/q(r)] with R and r the
major and minor radii of the torus, and q(r) =rB,/RB,.
The toroidal coupling factor is e=or/R <1, where the
value of o depends on the details of the equilibrium, e.g.,
o=7% for a low-beta, Shafranov-shifted circular equilib-
rium [9]. In the cylindrical limit (¢— 0), Eq. (2) has a
singularity at the surface w =ky,,v4, which may be regu-
larized by nonzero &. Since the toroidal coupling is im-
portant only near the singularity, it is retained only in the
highest-order derivatives of ¢,, + .

The essence of the TAE is that, for w=v4/2Rgq,
modes mo—1 and mg are both resonant at the point
r=ro, where q(ro)=(mo— +)/n. We write o>
=[v4(ro)/2Rq(r¢)1%/(1 —egy), where go represents the
complex shift of the eigenfrequency, and introduce
m=mo+I, with / <mo. Expanding Eq. (2) about the
point r;, where g (r;) =(mo+/— % )/n and where only the
coupling of the / and /— 1 harmonics is important, we ob-
tain
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where x=nq(r) —my, s=d(nq)/d(nr), and g =g
+21/moé, with §=¢ldIn(g/v,4)/81Ingl, =, The coupling
of the / and [/+1 harmonics near r;4+;, where
q(ri+1) =(mo+!+ §)/n, is also governed by Egs. (3)
and (4), with /— /+1. Near a singular layer (say,
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x—I1=—1%) where toroidal coupling is important, we
find
d ||z8 _ |do-1 e do|
dy 4 dy 4 dy
(5
d \edoi-y e (Ao
dy |4 dy 4 dy
with y =x—1[+ §. For ¢/=d¢,/dy we obtain
o1 =IyC,— 5 e(C— +gCHV/ Iy + wef(1—ghl, (6a)

ol—1=DyCi—\+ + e(C1+g C-DV Iy + 75 2 —gA)].
(6b)

The integration constants C; and C;— are the values of
yoi and yg/—, away from the singular point. While y¢' is
constant across the boundary, ¢, and ¢,—; are discontinu-
ous across the boundary layer of width &4, with jumps
given by A¢;=[Zwoidy =n(C/— 1B+ Cia;) and A¢;—,
=—(Ci—a; +CB;), with a;=—g/(1 —g;z) ~12 and
Br=a;/g;. The branch of the square root is to be deter-
mined from the causality requirement that if o, >0 all
functions of g are analytic in the upper half plane. Hence
along the real axis the square root is positive for |g| <1
and is —i(g/lg))(@>—1)"? for |g|> 1, manifesting
damping. Branch cuts are taken from g; ==+ 1 to —ioo.
We must ensure that all harmonics ¢; vanish as
x;=x—[]— * oo Except near the singularities at x;
==+ § the harmonics obey Eq. (4) with é=0. Thus,
near the singularities, ¢;~ (In|x?— §|+A)C;, where A
takes on various values depending on boundary condi-

tions. Three characteristic values of A are (a) Aw(s), the
value at x?Z & for the solution well behaved as
[x;]— o0; (b) A,(s), the value at x?< + for the solution
that is symmetric about x; =0, i.e., C;(§) =C/(— %),
where we denote C;(* +)=C*; and (c) A=A,(s) for
the antisymmetric solution, with ct=-¢ .

We now trace the construction of ¢;. For x; < — %, we
must have ¢; =C,” (In|x?— + | +A~). For x;= — %, the
jump relationship gives

61 =Cr (Un|x?— ¥ |+ Awtra;+2B,CE/CT) .

Since ¢; can also be expressed as a superposition of sym-
metric and antisymmetric solutions, we have

¢ =MC (In)x? — | +4,)
+ 0 =2)C Un|x? = & |+A,)
for x; 2 — 5. Hence,
Aot rai+aBCil 1 /Cm =0A+ (1 =LA, .
Further, for x; S +, we have

¢ =C/*lIn| ¥ —x/|+ A, — (1 =2)A,1/(20 = D],

with ¢/t =(2A,—1)C,”. Finally we must ensure after
the jump at x; = 1 that A =A; thus,

MA;— (1 —=2))A,
2A,—1

Ci+i
ct

—na;+) 7P+ =Aw.

Solving for A; after eliminating the C ~ coefficients, we
obtain our basic recursion relationship between the C*

TABLE I. Values of the A and A parameters, the normalized complex frequency g{® of Eq. (8), and the G
and H + functions in Egs. (14) and (15), as functions of the shear s.

s A A Re gé”’ Im g((,o) G H, H_
small s | 7s/4 | —exp(=1/s) | =1+ 7%s?/8 | —(16/7s)exp(—2/s) | (s/2)'/?> n~3/? 2/s n2s/8
0.3 .2605 -.0621 -.8740 -.00329 .1366 4.515 .09512
0.4 3831 -.1669 -.7553 -.02797 1810 2.467 .07606
0.5 5392 -.3206 -.6065 -.10238 2337 1.270 .05844
0.6 7326 -.5190 -.4620 -.2320 2967 .6250 .04472
0.7 9650 -.7594 -.3438 -.3968 3712 .3072 .03455
0.8 1.2369 -1.0405 -.2532 -.5761 4585 .1560 .02705
0.9 1.5483 -1.3613 -.1835 -.7586 .5594 .08320 .02150
1.0 1.8993 -1.7213 -.1282 -.9404 6747 .04667 .01733
1.2 2.7193 -2.5578 -.0445 -1.298 9520 .01686 .01169
1.4 3.6959 -3.5486 0175 -1.648 1.2970 7.09 x 1073 8.24 x 1073 |
1.6 4.8281 -4.6929 .0662 -1.993 1.7161 3.35 x 1073 6.02 x 10~
1.8 6.1153 -5.9905 .1059 -2.334 2.2154 1.73 x 1073 4.53 x 1073
2.0 7.5570 -7.4413 .1389 -2.671 2.8010 9.58 x 10~% 3.49 x 1073
2.2 9.1529 -9.0449 .1669 -3.007 3.4787 5.63 x 10~7 2.75 x 1073
2.4 10.9027 -10.8016 1910 -3.340 4.2544 3.47 x 1077 2.20 x 1073
2.6 12.8062 -12.7111 2118 -3.671 5.1336 2.22 x 1074 1.79 x 103
2.8 14.8632 -14.7735 .2301 -4.001 6.1220 1.47 x 1074 1.48 x 1073
3.0 17.0736 -16.9887 .2462 -4.330 7.2250 1.00 x 10~% 1.23 x 1073
large s | 6s%/7 -A + ;1; 1 —sm /2 47\?;235/45“/4 72/(15 - 35/2 511/2) 2—73?
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coefficients (henceforth we drop the superscript),

C[ﬂlz+l_(al+l+A) + A?

A+t a;+ Z+a1
A A
=Gt |22 g | 22 @
+a +oa+i

We have defined A(s) =(1/2n)[2A.—(A;+A,)] and
A(s) =(A;, —A,)/2x, and their values are shown in Table
I. Note that A<0, A>0, and A> |A|. The eigenvalue
go must be determined by the requirement that a solution
to Eq. (7) can be found for which C;— 0 as [/|— eo.
Note that if go is an eigenvalue, then go+2;/moé with j
any integer will also be an eigenvalue. Our principal in-
terest is thus in the imaginary part of go.

For given s and moé, Eq. (7) may be solved numerical-
ly. It can also be solved analytically in two asymptotic
limits. First consider the case moé< 1. Then all g; ex-
cept go will be large and for /=0, ;= —i, $;=0. Then
Eq. (7) is solved with only Cp and C - nonzero, yielding

: 1—y?
g60)= lim go=—l—_:){—2, (8)

with ;)—5—52/(5—1'). Since A>0, Eq. (8) gives
Imgd® <0, implying damping. Values of Regd” and
Img¢® $9) are shown in Table I and provide an upper limit to |

moé— 0

r [g -Z(l" /2
G ( &

) 2lexplf®Inlf — (f2—1)"1dg/g"

the damping expected at finite moé.

We turn now to the interesting asymptotic case [10]
moé&> 1. In this limit the coefficients in Eq. (7) vary only
slightly with / and we employ a finite-difference variant of
WKB theory. We write Eq. (7) in the form C;(X;+,
+Y,)=C;—\W;+C;+ 1 W;+, where the subscripts on X,
Y, and W indicate the dependence on / arising from g;
and hence a; and B;. Letting

/ /
Ci=I1Q;=expXIn(Q;) =exp [fH "

dl'lmQU')| (9)
and then expanding in orders of g'=dg/dl =2/m¢é with
0=Qo0+0Q.g', we have

X,+ Y,
N+ =
Qo Qo(l) w, -
(10)

O _ X' = QW' —QiW
Qo W(Qo"l/Qo) ’

with the primes denoting differentiation with respect to g.
Equation (10) is solved to find Qo=7f— (f2—1) /2 with

f=DRga+(1—A2+AY) U —gH'?1/2]A].

For |f] <1, we have |Qo| =1, representing an oscillating
behavior of the C;, whereas for |f| > 1, as occurs for
lgl~1 (since A>|A|), the solution that decays as |/|
— oo is chosen. Then Q; can be found from Eq. (10)
and the integral f(Q1/Q¢)dg performed to yield

an

(f2—1)'” {1+A01 —g/
with T a normalizing constant. In the oscillating region
we have |Ci—|~TO =)V —g+a0—g2) "2
and the usual WKB joining condition applies.

To explain the global structure of the TAE mode, we
show in Fig. 1 a schematic of the toroidal shear-Alfvén
continuum resonance curves, g&=(x,/)=—(2//m¢é)
+l1+16(x—1— 1)1 asa functlon of radial posi-
tion x =n(g—qo), for a succession of poloidal harmonic
numbers m=mqo+{, where go=mo/n. The harmonic
¢:/(x) will have a dissipative response where continuum
resonance g20=g{®, occurs. However, in the region
where g7 <1, with g, =go+2//m¢é, no such resonance
occurs. Each individual harmonic has only a limited ra-
dial extent, being localized where |x—1] < +. However,
toroidal coupling permits the broad excitation of a
global-type mode. In the region where |f (/)| < 1, the ad-
jacent harmonics have nearly equal amplitudes and shift-
ed phase; i.e., for Cyccos(y), Ci+<cos(y = 6;), with
cosf;=f(l) and y the phase. This “wavelike” pattern
exists in the region (m¢&/2)(g - —go) < x < (moé/2)(g+
—go), where f(g+)==1. Outside of this region, the
functions C; are evanescent, with C;+,/C; =exp(¥F 16:]),
where the ¥ signs correspond to g > g+ and g <g-, re-
spectively, and cosh; =|f(1)|. Since [g+| < l the dissi-
pation due to the continuum resonances at g?=1 occurs
where the mode amplitudes have exponentially decreased
from their level in the wavelike region. Therefore, the
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FIG. 1. Schematic plots of the toroidal shear-Alfvén continu-
um resonance curves g6*(x,/) and of several TAE harmonics
#:(x) and their global envelope, as functions of radial position
x =n(g —qo) with go=mo/n.
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damping decrement should be proportional to the tunneling factors expl — 2}, (dg/g') ;1.
In order to calculate the damping rate we construct a quadratic form from Eq. (7):
+ 22 _ X2 A
1=31c|? B +Z|C1|2-A —Z(CI*CI+|+C1"-‘HC/)_m4~=O. (12)
] A+ ] A+ ] A

ar+1 a aj+|

For real g, I will have an imaginary part arising from @ and g for |g| > 1. Moreover, for large moé where C; decays
rapidly as |g| increases, the main contribution to Im/ will come from |g| close to 1. The damping rate will be deter-
mined from the relation (Img)(dI/dg)+ImI =0. Using Eqs. (10)-(12), we finally obtain an analytic expression for the
damping rate y =Ime when m¢é> 1:

Img®=2y/ewg=— Tn%[exp(—molélH+)+exp(—moléIH-)] , (13)
0
with , y
V2 144242 a_ )", A"
G(s)= — = — —1 +— 14
o W (AZ_AZ)I/Z{H Al J A (14)
and
e —1p_ BB=D'" 4] _ +__ A4 -
H +(s)=cosh™'B PETE + OIS [F(k,¢) —E(k,¢)]1F TEYDIE [K(k)—EW®)]. 15)

Here A=(+A>—A%/2A, B=—A/A, k*=(4*+B? I
—1)/(42+B?), ¢=sin"'[|4|/(42+B2—1)"2], and ' field, will increase with m. Thus intermediate values such
F(k,p) and E(k,p) are the usual elliptic integrals, with as those seen in recent experimental observations of the
K(k)=F(k,n/2) and E(k)=E(k,n/2). Values of G(s)  TAE instability [1,2] are most dangerous. Finally,

and H + (s) are shown in Table I. profiles with large é=¢ldIn(g/v4)/dIng] ™' should be
An interpolation of FEgs. (8) and (13) is  susceptible to alpha-particle-driven instability and

(Img) ~'=Umg®) ~'+(Img*) ~'. Comparison with  alpha-particle loss since the mode extends for large radial

the numerical solution of Eq. (7) shows the following  distances and the damping is small.
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