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Resonant Damping of Toroidicity-Induced Shear-Alfven Kigenmodes in Tokamaks
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An analytical theory of toroidicity-induced shear-Alfven eigenmodes (TAE) is presented. The full
two-dimensional problem is treated using a variational approach and the radial eigenmode structure is
analyzed. We show that TAE suAer a significant damping due to the strong absorption occurring at the
resonances with the shear-Alfven continuous spectrum. The resonant damping is sho~n to be larger
than the electron Landau damping and therefore constitutes an important dissipation mechanism in

determining the threshold for TAE instabilities driven by alpha and energetic particles in tokamak ex-
perimentss.

PACS numbers: 52.35.Bj, 52.55.Dy, 52.55.Fa

With the tokamak fusion research program approach-
ing the ignition experiment, the issue of the collective
processes related to the energetic-alpha-particle dynamics
in ignited plasmas has received increasing attention. The
performance of the future reactors is crucially dependent
on the good confinement of the 3.5-MeV alphas produced
by the d-t fusion reactions and on the efficiency of the
current-drive systems. Also in the latter case the dynam-
ics and the confinement of high-energy ions can be of ma-
jor importance, as in ITER (International Thermonuclear
Experimental Reactor), for which a —I-MeV neutral-
beam current drive has been proposed. These energetic
ions will have speed comparable to the Alfven velocity
and hence could excite, among others, shear-Alfven
waves. Although the shear-Alfven continuous spectrum
is strongly damped because of phase mixing, in a two-
dimensional toroidal geometry discrete eigenmodes,
known as toroidicity-induced shear-Alfven eigenmodes
(TAE) or gap modes, do also exist [1,2]. The TAE are a
very effective scattering mechanism for the high-energy
alpha particles. Low-amplitude modes [31 with BB/8
=5x10 can already cause the loss of the fusion al-

phas, and therefore the linear stability of the TAE is a
relevant issue for fusion reactors.

Recent theories [4-7] have studied the linear stability
of TAE driven by the resonant interaction with fast alpha
particles considering the electron Landau damping as the
only dissipation mechanism. The results show that the
instability threshold for these modes is very low and that
they can become unstable in ignited tokamaks. The most
unstable modes have high toroidal mode number approxi-
mately given by [4,5] n=rp/sqpRpp, . Here p, is the
Larmor radius of the alpha particles, s the magnetic
shear defined as s=rpqp/qp, Rp tile major radius, qp the
safety factor at ro, ro the radial position of the model ra-
tional surface defined by mp=nq(r =rp), and mp the po-
loidal mode number. For ITER and BPX (Burning Plas-
ma Experiment) we have typically n = 10. In this Letter,
we report our recent results [g] about TAE damping due
to the coupling with the shear-Alfven continuous spec-
trum, suggested as a possible dissipation mechanism for
these modes in Ref. [4]. We show that, for typical pa-
rameters, this damping mechanism is much larger than

the electron Landau damping. As a result, the instability
threshold for TAE is higher than previously estimated.
In the following, we will focus on the general approach,
which treats the full two-dimensional problem with a
variational technique, as well as on the underlying physi-
cal picture rather than mathematical details, which will

be given in a future publication [9].
In Ref. [Il, it is shown that for low-p [p=—(kinetic

pressure)/(magnetic pressure)] tokamaks with concentric
circular magnetic surfaces, TAE can be described by the
equation

d N+ (I +2ecos0) —F ~ill =0,
dO M

where A is a scalar field related to the Fourier transform
of the perturbed magnetic flux Bp, F=s /(1+s 0 ),
and toq=—vz/qR is the Alfven frequency, vz being the
Alfven speed. In the large-0 limit, Eq. (1) describes the
motion of a free particle in a small perturbing periodic
potential. In the e 0 limit the solutions should be just
plane waves =exp(+ik8), k =to/toq In a .one-dimen-
sional periodic lattice of period L, the traveling waves will
combine in standing-wave solutions when the Bragg-
reflection condition is satisfied, 2L =lk, , 1I,

—= 2tr/k, l =1,2,
3, . . . . In our case L =2tr. Then we must have k =to/
toq =l/2 for standing waves =sin(l8/2), cos(l0/2). For
the two lowest-energy states the eigenfrequencies are
(to~/4)(1+ e). In real space this corresponds to the for-
mation of small but finite gaps at the intersections of the
shear-Alfven frequencies of neighboring poloidal harmon-
ics, i.e. , at k =to/co& = ~ —'. Finally in Eq. (1) the role
of F is to create a potential well which can localize a
discrete eigenmode inside the gap with a frequency
(cog/4)(l e) ( co ( (top/4)(l +e).

In the high-n limit the individual TAE eigenfunctions
are highly localized in the radial direction between two
mode rational surfaces and many poloidal harmonics are
coupled together to determine the global radial envelope
structure. Spatial (radial) variation of co~ further local-
izes the envelope. Outside its localization region, the en-
velope is exponentially decaying. In general, different po-
loidal harmonics can meet the resonance condition where
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the TAE eigenfrequency matches the local shear-Alfven
continuous spectrum. Wave damping then occurs due to
the finite absorption occurring at each resonance. The
magnitude of the damping depends on the tunneling of
the envelope out of its radial localization region. The
tunneling becomes exponentia11y small in the high-n limit,
which reinforces the fact that the most unstable solutions
are obtained for large n.

Equation (I) can be reexpressed in the (r, 8) coordi-
nates. Then the magnetic flux perturbation By satisfies
the equation

(2)

grangian:

hZ= "dr )V.b Vh [' —" '+ '"'
)V, h )'.

(3)
looking only at internal modes. Equations (2) and (3)
can be further simplified in the high-n limit, where we

can assume localized modes.
We focus our attention on a mode excited at the ration-

al surface rp, with mp=nq(rp). Because of the to-
roidicity-induced mode coupling between different po-
loidal harmonics, we can write

By=e' " "" +by)(r)e (4)
J

In the high-n limit, the poloidal-mode-number spreading
can be considered small, i.e., (j~(&mp in Eq. (4). We
also have

b V= '
[n(q —qp) —j]= '

(t —j), (s)
qR qR

where t —= (r rp)/hr„h—r, being th.e distance between two

neighboring rational surfaces, i.e., hr, = I/nq'(rp).
It is then possible to show that Eqs. (2) and (3) reduce

Here, for n)& l, the coupling with the compressional
Alfven wave has been neglected, 80 is the equilibrium
magnetic field, b—= Bp/Bp, and I/F~ is the flux surface
average of 4np(r)/Bp. Equation (2) can be derived as
the Euler-Lagrange equation from the following La-

to

s' [(t —j)' —n'f(t)] by, —[(t —j)' —n'f(t)]by, =epo' s'

2

2 2mrohr,
=kg ' „dt's [(t j)' n'f—(t)] —s' by, +~by, ~

2trRp q R~ " 8t

I (b'yty )+hp) )), —t' (6)

—
ep 0 Sy~ 8&j~ )+s by&-bpj~ (+c.c. —

t t
(7)

.Here, ep =2(rp/Rp+5'), 6—' being the derivative of the
Shafranov shift, ke ——mp/rp is the poloidal mode number
of the excited mode, 0 is the mode frequency normalized
to the local Alfven frequency 0 =to/(Fzp/qpRp), and

f(t) is a slowly varying function of t which accounts for
the radial profile of the Alfven frequency co~, i.e.,
f(t)=tpgp/to] and f(0) = l. Equations (6) and (7) are
the differential and variational formulations of a truly
two-dimensional eigenvalue problem, which in general is
difficult to solve.

In the n ~ limit, the problem can be reduced to one
dimension using the standard approach of the ballooning
transformation, based on the translational invariance of
the 8y~ (t) [10). The translat. ional invariance argument,
however, breaks down when the coupling with the shear-
Alfven continuous spectrum is taken into account, due to
the singular nature of the poloidal harmonics at their res-
onant surface. Therefore, the problem must be handled
as a two-dimensional one and the radial eigenmode struc-
ture (the envelope) becomes essential to describe the
physics of the coupling between the discrete and continu-
ous spectra.

The Lagrangian of Eq. (7) can be divided into two
pieces: bL =BLN R+i BLR, with a nonresonant contribu-
tion 6'LNR corning from the regular slowly varying po-

p +oo
y(t, t —j)=J d8 '" '"@(t 8)

Substituting byj(t) in Eq. (6) with A(t) expressed in the
eikonal form A(t) =exp[if'8t, (t)dt], we find the TAE
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t
loidal harmonics, and a resonant contribution BLR due to
the fast variation of the singular poloidal harmonics at
the resonances. We will make the assumption that
~bLR~ (& (bLNa[ so that at lowest order the problem is de-
scribed by 8LNR=0 and can be handled via the usual

ballooning transformation approach. At next order 8'LR

gives the damping due to the resonant absorption effects.
The consistency of the assumption about the smallness of
BLR will be shown a posteriori to be a consequence of the
exponential decay of the radial envelope outside its locali-
zation region. First, we solve the Euler-Lagrange equa-
tion (6), neglecting the Alfven resonances. Let A=Op
+iy The poloida. l harmonics 6&~(t) can be assumed to
have the form hy~(t ) =2 (t)y(t, t —j), where y(t, t j) is-
a function of a fast variable t —j and a slow variable t,
while A(t) is an envelope function of the slow variable t
only. Following the ballooning transformation approach,
the function y(t, t —j) is written in terms of its Fourier
transform:
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eigenmode equation in the ballooning representation,

[I+s (O —
O(, ) ] + npf(t)(1+2epcosO)[l+s (O —

O(, ) ] ~4=0.
aO BO

(9)

Imposing the boundary conditions 1@t 0 as lOl

Eq. (9) yields the following local dispersion relation:

F(npf(t), O&(t)) =O, (io)
where

F(n(if(t ),O(i (t ) ) = y+ —, s(t[ n pf(t ) ——,
' ]

I

p szcpOpQcosOp,2

a=(I+ I/s)e (', and y=—( —I —I +) ' with I +.

—= npf(t) —
—,
' + epnp. In deriving Eq. (I I), we have as-

sumed ep&s( I to further simplify the analysis. (The
present theoretical approach is also applicable to more
general cases where, however, the local dispersion relation
and the damping rate need to be solved numerically. The
details will be given in Ref. [9].) The local dispersion re-
lation, Eq. (10), can be considered as the definition of the

6LNR 2 27wpkr, ~+ w+~
=2(rk&

2
2' „dtlA(t) l 2„dO

2nRp qpRp

1 WKB ray trajectories in the (O(„t) plane. More general-
ly, 0& can be viewed as the symbol of the diA'erential

operator ( iB,—) acting on A(t):
F(nof(t), i8—, )A(t) =0. (12)

Thus, F(npf(t ), —i 8, ) is a pseudodifferentiai operator
to be interpreted as its series expansion in powers of
( —it), ). Equation (12), together with the boundary con-
ditions lA(t) l 0 as ltl, defines the most general
eigenvalue problem for TAE for arbitrary radial profiles

f(t) in the small-shear zero-pressure limit. The calcula-
tion can be readily extended to the finite-pressure and
large-shear cases. The solution A(t) determines the radi-
al envelope structure. Once Eq. (12) is solved, we have

all the ingredients to proceed with the calculation of the
damping. Using bpj =A(t)p(t, t j) and E—q. (8), the
nonresonant part of the Lagrangian can be shown to be

2

—np(1+2epcosO)f(t)t@t [I+s (O —Oq) ].
For the resonant part, it is possible to show that at a given resonance the main contribution comes from the two poloidal
harmonics which are closest to the resonance. The contribution to the resonant Lagrangian coming from the resonance
involving the poloidal harmonics i and i+ I (which we call resonance "i") is given by

r 2"' =k,',', 's'~ dx~ [x' —npf(&)1
q 02R02

2

+ [(x —1) —npf(l)] by(+ i
—epnp 8p( bp(+ i+cc.2 2 a 9 8

t)x Bx |)X

(i4)

where x= t —I. Obvio—usly, the complete resonant La-
grangian is given by tIn Eqs. (16), B( and C( are defined as

8X

bLa =+8LR( ~ (is)
where the sum is extended to all resonances. Considering
Eq. (6) near the resonance layer, we can show that the
corresponding behaviors of 8,8&( and tl„bp(+i are given

by (to lowest order in s)

tc(e.n p+ B([(x i ) ' n,'f—«)]1-,
sD

B( = [np2f(l) —
—,
'

]A( —epnp'A(+ i,

C(=epnpA( —[niif(i) —
4 ]A(+i,

D= [x' —niif(l)][—(x —1)'—npf(l)] —epnp,

(16)
by(+i = [B(epnp+C([x npf(i)]t .

l

Bx sD

A(=A(t =i), and A(t) is the solution of Eq. (12). Car-
rying out the integration in Eq. (14) as prescribed by
causality, we obtain

bLR, 2xro~r. 0 0
, ,

'
Z&(lnp2f«) —

4 I IA(l'+IA(+il' —2, , «(A(»+i) «+«»] ~ (i 7)
2(rRp qpRp ( npf(l) —

g

where A(=t[npf(l) —
—,
' ] —epnpt ' and b=max(s', epnp).

Using the variational formulation of the problem, the global dispersion relation for the TAE can be written as

6LgR+iBLR =0.
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y
6'L

R

n p np|)(SL NR)/t) np
(19)

Equation (18), with 8LNR and bLR given by Eqs. (13)
and (15), is valid for an arbitrary profile function f(t) in

the s & 1 limit.

The eigenvalue is Q—= Qp+iy. Qp is the solution of the
eigenvalue problem defined by Eq. (12) and is given by
Op =

4 [1 —ep(l —s n /8)l. To next order, y is given by

hr, 1 rp
a =

nqpL& Lz nqps
(20)

where L~ ' ——i8ln(q /t ~)/r)r ~. The damping rate can be
calculated analytically [9] and is given by

In order to obtain a quantitative estimate of the magni-
tude of the damping due to resonant absorption, we con-
sider, in the following, the special case of a linear profile
f(r) =I+at, with

lal'"
8x

r
Qp

where Ap= —,
' and

i l/2

[
—2T(1 + —arccosh(l/a) ) 2+ e

—2R(1 —arccosh(l/a) )2] (I & 2) —~/ [arccosh(1/&) ]-
t.'ps

(21)

Cps X2 2
1 aT= arccosh — 1+

8lai a
——(1 —a') 'i'

2
(22)

28p 2 2 2

R= 1
— 1+

iai 16 2

s 2~2 a2 1
2 2 2

arccosh ——
1
— + 3+ +— 1+

a 4 32 2 2 8 2
ln 1+ 16

S Ã

y ep Rp= —0.0225—
Qp s nqpLg

For s & 1, (y/Qp), then reduces to the following characteristic scaling:

exp[ ——, n nqps (Lq/Rp)arccosh(1/a)]

(1 —a ) [s arccosh(1/a)l

(23)

(24)

The damping rate given by Eq. (21) must be compared
with the electron Landau damping (y/Op)l. = —(P,m, /
m;) . For typical [TER and BPX parameters, (y/Ap)L
is approximately 3.7X10 at P, =0.05. On the other
hand, for rp/L~ =1, epn =1, s =0.5, n=5, we have

(y/Op)„= —0.015, which is a factor = 5 larger than the
electron Landau damping rate. This fact has relevance to
the stabilization of high-n modes excited by alpha parti-
cles [4,5]. The complete dispersion relation, including
circulating alpha-particle excitation and Landau and
Alfven resonant damping, is

(25)

P. ,— -O(10 '10 ')
&'mfa &p

The resonant damping mechanism is most eA'ective at
small or moderate n, i.e., n= ep ', due to the fact that
the envelope amplitude is exponentially small at the reso-
nance. This causes the poloidal number of spectrum of
TAE to be at high n, where the most unstable modes
occur [4,5].
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Qp Lp. Qp Qp

with p, being the Larmor radius of the alpha particles,

L~. the scale length of the alpha-particle pressure profile,

f, the fraction of resonant particles, and kep, -ep/s.
With resonant damping effects taken into account, the
critical beta value for the alphas to drive the modes un-

stable is
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