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Wave-Function Approach to Dissipative Processes in Quantum Optics
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A novel treatment of dissipation of energy from a “small” quantum system to a reservoir is presented.
We replace the usual master equation for the small-system density matrix by a wave function evolution
including a stochastic element. This wave-function approach provides new insight and it allows calcula-
tions on problems which would otherwise be exceedingly complicated. The approach is applied here to a
two- or three-level atom coupled to a laser field and to the vacuum modes of the quantized electromag-

netic field.

PACS numbers: 42.50.—p, 32.80.—t

A typical model system in quantum optics consists of
an atom coupled simultaneously to a laser field and to the
vacuum modes of the quantized electromagnetic field.
The atom-laser interaction, responsible for absorption
and stimulated emission processes, is coherent, whereas
the coupling between the atom and the vacuum modes,
responsible for spontaneous emission processes, is funda-
mentally incoherent. This leads to a dissipation of energy
from the “small system” (atom +laser) to the “reservoir”
(vacuum field), which is usually treated by a density
operator approach. A master equation, usually referred
to as the optical Bloch equations (OBE’s), is written for
the reduced atomic density matrix p4 [1].

We present here an alternative approach using a
wave-function treatment to describe the atomic system.
The apparent incompatibility between such a wave-
function approach and the inherent irreversibility of the
spontaneous processes is lifted by introducing repeated
“gedanken measurements” on the atomic system simulat-
ing the detection of the spontaneous photons. The ran-
dom result of each of these measurements determines the
atomic state afterwards, and is at the origin of the ir-
reversibility. We show that this treatment is equivalent
to the standard density matrix approach leading to the
OBE’s.

There are two main interests in this approach. First, it
gives new insights into the processes taking place in the
interaction of an atom with light. Here we will give two
examples concerning the Rabi transitory regime for a
two-level atom and the ‘“dark resonance” problem.
Second, it provides an efficient computational tool. If we
consider an atomic system with N states, the master
equation treatment requires the simultaneous solution of
N? OBE’s, while in this new approach, we deal with wave
functions and we have to look for the evolution of no
more than N variables. For instance, in problems related
to a quantum treatment of laser cooling, /V includes both
the number of internal and external atomic states and can
be very large. This makes the density matrix approach
unwieldy except for simple one-dimensional configura-

tions, while the wave-function approach can still be han-
dled in the general case.

This wave-function approach can be applied to a wide
class of problems involving dissipative processes [2]. For
simplicity we restrict ourselves here to the simple case of
a two-level atom, with a ground state g and an excited
state e, coupled to a monochromatic laser field and to the
quantized electromagnetic field in its ground state. The
laser field is described by a classical function &(1) =6
xcoswyt. The atom-laser coupling can then be written in
the rotating wave approximation (A =1):

Ho=—8S*tS +(a/2)(ST+S57),

where St =|eXg|, S =(S*)". 6=w, —w, is the de-
tuning between the laser and atomic frequencies; Q
= —d &, is the Rabi frequency and characterizes the cou-
pling between the atomic dipole d and the laser electric
field. Suppose that the atom-quantized-field system is
described at time ¢ by the wave function

ly(1))=19())®|0) =(aglg)+a.le)) ®|0), 1)

where |0) represents the ground state (no photon) of the
quantized electromagnetic field. At time ¢+dt, some
spontaneous photons may have been emitted; here, we
choose dt <T" ™', ~',6 ', so that at most one spontane-
ous photon is emitted between ¢ and t+dt. The wave
function at time ¢ +dt can then be written as

ly(t+dt) =y QU+d))+|y PG +drt)), (2a)

ly @t +d))=(aylg)+aile))®|0), (2b)

lyMG+de)) =g @Y Brclk, e . (2¢)
| %3

The expressions for |y @) and |y")) can be obtained
from the Wigner-Weisskopf approach to time-dependent
perturbation theory [3]. Let us summarize here the main
results. First the square of the norm of Iw(')) is equal to
the probability dp =Tdt|a.|?=Tdt{s()|S*S ~|e())
for a spontaneous emission during dt¢, and one has
(p@y )y =1 —(yD|y)=1—dp. The values of aj
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and a. can be obtained from the evolution of |¢) dur-
ing dt with the non-Hermitian Hamiltonian H =H,
—il'S*S /2, whose effect, in addition to Hyg, is to
reduce the excited-state amplitude by a factor 1 —I'dt/2
[4]. In |y"), the atom is taken in g since the probability
for a reexcitation during dt after a decay can be neglect-
ed; the quantized field is in a state which contains one
photon, with a probability amplitude By . that a given
mode k, ¢ is populated after dt.

We now assume that all spontaneous photons are
detected with a perfect counter and that we measure at
time ¢+dt the number of those photons. Depending on
the result 0 or 1 of the measurement, we have to project
ly(t+dt)) on |y @(+dr)) or |y (t+dt)) and nor-
malize the result. In a numerical study of this process,
the randomness of the measurement result is mimicked
by the choice of a pseudorandom number ¢ uniformly dis-
tributed between 0 and 1. The two possible cases € > dp
and e <dp correspond respectively to the detection of 0
and 1 photon. After this gedanken measurement process,
assuming that the detected photon has been destroyed, we
get for e > dp

ly(t+dt)) =p(aglg)+alle)) ®|0)

=u(1 —idtH)|¢(1))®]0) (3a)

or, for e <dp,

ly(t+dt))=|g)®|0), (3b)

with g =(1 —dp) ~'2. In both cases we return to a wave
function with the same form as (1), i.e., an atomic part
times the vacuum of the field, and the whole sequence can
be repeated to determine the (random) time evolution of
the atomic part |¢(1)) of the wave function. Note that not
only the detection of a photon but also the zero measure-
ment leads to a modification of the initial wave function
[5-71.

This procedure, which we denote the Monte Carlo
wave-function (MCWF) approach, is equivalent to the
standard master equation approach (OBE). More pre-
cisely, we now demonstrate that the density operator (¢)
that one obtains by averaging |¢(1))¢(z)| over the
different outcomes for the MCWF |¢(¢)) evolves accord-
ing to the usual OBE’s. This ensures that for any atomic
operator B, the mean value |¢(¢)|B|¢(z)), averaged over
the different outcomes for |¢(¢)), is equal to the one time
average b(t) =Tr(Bp,(t)), where the initial density
operator p,4(0) coincides with [¢(0))(#(0)|.

Consider a MCWF |¢(1)); at time ¢ +dt, the operator
o(t+dt)=|p(t+dt)¢(t+dt)| can take two possible
values corresponding to the two possible choices in (3).

* For a given |¢(1)), the average value of o(z +dt) is

o +dt) =1 —dp)u*( —idt H)|o()Xo() | +idt HY) +dplg)g]

=o(t)—idilHo(t) —c(OH+TdtS “c()S™.

We now average (4) over the different random issues for
|¢(2)), all starting in |¢(0)) for 1 =0. It gives

%‘ti =i[5,Ho) —%(S*S “6+65StST)+IS &S,
(5)

which is identical to the well-known OBE’s [1]. The
MCWF method can also be used to calculate (t) when
p4(0) describes a mixed state. One just has to choose
among different initial MCWF’s with probabilities ensur-
ing agreement between 6(0) and p4(0).

As an example we present the derivation of the Rabi
transitory regime using the MCWF approach. In Fig.
1(a) we show the population of the excited state |a,(z)|?
as a function of time for a given “history” for |¢(¢)). The
average of 100 of those sequences, all starting in g at
1=0, is sketched in Fig. 1(b), together with the result ob-
tained from the OBE’s. It is clear from Fig. 1(b) that the
decay of the Rabi oscillation towards a steady-state value
results from a dephasing of the individual oscillation of
each of the excited-state populations.

We now indicate how to handle situations where the
states e and g have degenerate Zeeman sublevels. At
each step dt, we calculate as above the probability dp
=I'r. dt for emitting a spontaneous photon, where =, is
the total population of the excited state e. Using dp we

(4)

decide randomly whether a spontaneous photon is detect-
ed. If no photon is detected, the wave function is slightly
modified according to (3a): The Hamiltonian evolution
due to Hy is taken into account, all excited-state ampli-
tudes are reduced by a factor 1 —I'dt/2, and the resulting
wave function is normalized. If a photon is detected, a
second random choice determines its angular momentum
g- along the quantization axis Oz (gq. = % 1,0) according

a b
Te T I(I) T T (l) T
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FIG. 1. (a) Time evolution of the excited-state population .
of a two-level atom in the MCWF approach (@ =3I, §=0).
The dashed lines indicate the projection of the atomic wave
function onto the ground state after the detection of a spontane-
ous photon. (b) Average of z.(z) for 100 MCWEF starting all in
the ground state at 1=0. The dotted line represents the result
from the standard OBE treatment.

581



VOLUME 68, NUMBER 5

PHYSICAL REVIEW LETTERS

3 FEBRUARY 1992

to the various excited-state populations of [¢(z)) and the
branching ratios from these states (square of Clebsch-
Gordan coefficients). After this detection the atom is in a
superposition of the ground states |g,m.) (with angular
momentum m, along Oz) with amplitudes proportional to
the former excited-state amplitudes (e,m.~+gq.|¢(1))
times the Clebsch-Gordan coefficients corresponding to
the transitions e,m,+g,— g,m,. As for the two-level
case, one can show that this leads to an evolution of &(¢)
identical to the OBE’s.

As an example, consider a g,J =1+>¢,J =1 transition
irradiated by two counterpropagating resonant laser fields
with the same intensity and polarized o+ and o- with
respect to the z axis [Fig. 2(a)l. It is known from the
OBE analysis that the atomic population is eventually
trapped in a ground state which is not coupled to the
laser field [8]. At positions where the two waves are in
phase, this state is |one) =(g,m.=—1)+|g,m.=1))/
V2. Consider a MCWF analysis of this situation with the
atom starting for instance in |g,m.=*1). The atom-
laser coupling leads first to an increase of the population
of the excited state |e,m. =0) [Fig. 2(b)]. A spontaneous
photon may then be emitted which, depending on its an-
gular momentum g.= =1, puts the atom back into
|g,m.=F1). But it may also happen that no spontane-
ous photon is detected after a very long time, the succes-
sive steps “evolution due to H, projection onto the O-
photon state” causing a continuous rotation of the wave
function from |g,m.==1) into |¢nc), and therefore
trapping the atomic population into this state [last part of
the time sequence of Fig. 2(b)]. The MCWF approach
offers a completely different physical picture if another
gedanken measurement is considered. For instance, we
could have chosen to measure the component g, of the
angular momentum of the detected photon, where the

(a)

m=-1 m=0 m=1 |
i

=1 ! a -

2/ 0 N2 a4l i
|

| /1 / — ]

m=-1 m=0 m=1 o/ [—

0 5 10 15
time (unit: 1/T)

FIG. 2. (a) g,J =1+>¢,J =1 transition excited with 6+ —o
light. An atom starting in |g,m. = % 1) will remain in the sub-
space {|g,m.=2£1), |e,m. =0) because of the zero transition
element between |e,m. =0) and |g,m. =0). (b) Time evolution
of the population of |e,m. =0) and of |¢nc) for a given MCWF
(=0, (e,0|Holg,—1)=—(e,0|Holg,1)=I'v2). The arrows
indicate the detection of a spontaneous photon with angular
momentum % 1 along Oz. At 1 =co the atom always ends up in
lonc) (population trapping).
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axis is parallel to the resulting linear polarization of the
laser light at the atomic position. Because of the “z po-
larization” of the laser excitation along the y axis, we
identify the trapping state as |¢pne) = g,m;=0), and
after the detection of a photon with g, = =1, an atom
decaying from the excited state |e,m. =0) (superposition
of the states Ie,my= =+ 1)) arrives directly in this trap-
ping state. In particular no continuous rotation towards
the state |¢nc) takes place in this picture. Let us em-
phasize that both detection schemes are legitimate and
lead to average results equivalent to the ones given by the
OBE’s. The choice of a particular detection scheme
should be made by considering the simplicity of the nu-
merical calculation, or for emphasizing a particular phys-
ical aspect of the problem [9].

A number of problems require a quantum treatment of
the external atomic degrees of freedom. To this purpose
the detection of a spontaneously emitted photon with
momentum Ak should be chosen according to the known
radiation pattern for the transition. Next the polarization
of the photon (perpendicular to #k) is picked up, and the
atomic wave function after this detection is a superposi-
tion of atomic ground states with different values of the
momentum p, |g,m.,p), with amplitudes derived from the
former excited-state amplitudes {e,m/,p+ hk|¢(z)) [10].

The MCWF approach is not limited to the calculation
of one-time average values of atomic operators. Consider
for instance the correlation function in a state |yo) =|¢o)
®|0) of two Hermitian atomic operators A and B in the
Heisenberg point of view:

ct,t) =(ypolABU+1)+BU+1)A1) |y

(r >0). It is usually calculated in the OBE formalism
using the quantum regression theorem (QRT) [11]: One
expands B on the basis X;;=|i)(j|, where [i),|j) are
members of a basis set of the atomic Hilbert space; the
values of the corresponding ¢;;(¢,0) are one-time averages
and are calculated directly from the OBE’s. The 7 evolu-
tion of the ¢;;(¢,7) is then

dcij

#(l,r)=§£,—juckl(t,f) s (6a)
where the coefficients .L;j; are shown to be the same as
the ones giving the evolution of the one-time averages

(QRT):

d{X;; (1))
dt

In the MCWF approach, we first let |#o) evolve from O
to t. For a given outcome |¢o(z)) of this evolution, we
form the two new states |y+ (0)) =p % "2(1 %+ 4)|po(1)),
where p+ are normalization coefficients. Evolving now
lx+ (t)), we calculate ¢, (r) =, (z)|Bly,(r)) (r==),
and we finally obtain c(¢,7) =[u+c+(t) —u—_c-(z)]1/2.
This procedure, with an average over the different out-
comes for |y+ (7)) for a given |9o(1)), and then with a

=§ L X (1)) . (6b)
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second average over the different outcomes for |go(zr)),
gives the same results as the ones obtained from the
QRT. To prove this, we check that ¢;;(r), obtained as
the average of

3l G Xl x+ () = — G- (D X |y - (e 0]

over the different outcomes of the Monte Carlo evolution,
indeed equals ¢;;(s,7). For 7 =0, this is easily verified
from the expression of |y +(0)). Because they are linear
combinations of one-time averages and therefore follow
from (6b), the evolution of the &;(z)’s is identical to the
evolution (6a) of the ¢;;(z,7)’s, and the identity holds for
any 7. Similarly, the value of {[4(¢),B(t+7)]) can be
obtained from this procedure by considering |y (0))
=u3"2(1+iA4)|¢o(1)). Using two pairs of states
2+ (t),x%+ (r) derived from each of 100 wave functions
|#o(2)), we have simulated the dipole correlation function,
and therefore the fluorescence spectrum of a laser driven
two-level atom and we have obtained a satisfactory agree-
ment [same type as in Fig. 1(b)] with the OBE result.

Finally, we discuss the connection of our approach with
previous wave-function approaches to quantum optics
problems. In the pioneering work of Mollow [12] the to-
tal atom+field wave function was used to keep track of
all emitted photons, and to derive quantities such as the
frequency spectrum of the fluorescence light. In contrast,
our purpose has been to eliminate the field and to derive a
stochastic evolution of only the atomic part of the wave
function. A wave-function approach has also been fruit-
ful in studies of the quantum jump phenomenon [13,14].
It gives access to the delay function characterizing the
statistical distribution of the time between two successive
spontaneous emissions. This delay function can also gen-
erate a very efficient Monte Carlo analysis of the process,
where the choice of a single random number determines
the time of emission of each spontaneous photon. This
has been used to demonstrate the existence of dark
periods in a “quantum jump situation” [14], and to ex-
plore the cooling produced by velocity selective coherent
population trapping [15]. The MCWF method is not as
fast as the ones based on the delay function, since many
random numbers are needed before the detection of a sin-
gle photon (dt <T" ™'), but on the other hand it does not
require any precalculated delay function, and it can be
used for atomic transitions with arbitrarily large numbers
of levels. The MCWF treatment may also be useful for
the inclusion of dissipation in the generation and evolu-
tion of ‘“nonclassical” field states. Here, however, its
effectiveness should be judged by a comparison with the
methods specifically developed for this type of problem,
e.g., the generalized P distribution [16].

To summarize, we have presented a general wave-
function approach to the problem of dissipation of energy
from a coherently excited quantum-mechanical system.
This approach provides new physical pictures which may
be particularly valuable in situations dealing with a single

quantum system instead of an assembly [17]. It can also
greatly simplify the calculations when a large number of
quantum levels are involved; the quantum treatment of
collisions of slow atoms irradiated with quasiresonant
laser fields and the description of 3D laser cooling and
trapping processes in a regime where the semiclassical
approach [18] is not valid anymore are examples of prob-
lems which could benefit from such an approach.
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Note added.— Since the submission of the manuscript,
it has been brought to our attention that a similar pro-
cedure has been developed in the context of nonclassical
field generation [19].
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