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Ekert has described a cryptographic scheme in which Einstein-Podolsky-Rosen (EPR) pairs of parti-

cles are used to generate identical random numbers in remote places, while Bell's theorem certifies that

the particles have not been measured in transit by an eavesdropper. We describe a related but simpler

EPR scheme and, without invoking Bell's theorem, prove it secure against more general attacks, includ-

ing substitution of a fake EPR source. Finally we show our scheme is equivalent to the original 1984 key

distribution scheme of Bennett and Brassard, which uses single particles instead of EPR pairs.

PACS numbers: 03.65.Bz, 42.79.Sz, 89.70.+c

I n a striking "practical application" of Einstein-
Podolsky-Rosen [1] (EPR) correlations and Bell's theo-
rem [2], Ekert [3], elaborating on a suggestion of
Deutsch [4], has described a quantum key distribution
scheme in which two separated observers perform mea-
surements on a sequence of EPR-correlated pairs of par-
ticles in order to generate identical random numbers. By
a statistical test that confirms the expected violation of
Bell's inequality, they are able to verity that the EPR
pairs were not subjected to eavesdropping by a third par-

ty.
We show here, however, that neither Bell's inequality

nor EPR-correlated states are an essential part of the
generation and certification of such a shared random
secret. We first demonstrate the security against eaves-

dropping of a simpler but conceptually equivalent version

of Ekert's procedure, which uses only the perfect EPR
correlations both to construct the shared random number
and to test for listening in. Ekert conjectured, but did not

prove, that his scheme was also secure against a more so-

phisticated attack —replacement of the true EPR source

by a fake source designed to imitate correct EPR statis-
tics while leaking information to an adversary. We prove
that such a source cannot exist for our scheme, and gen-
eralize this proof to cover all known attacks allowed by
the laws of quantum mechanics. Finally, we show that
our simpler realization of Ekert's EPR scheme is

equivalent to the original key distribution scheme of Ben-
nett and Brassard [5] (BB84), which uses ordinary
single-particle states instead of EPR pairs, and we prove
an analogous security theorem for the BB84 procedure.

Because they rely on a Bell inequality to certify the ab-
sence of eavesdropping, each of Ekert's two observers
must choose randomly among three coplanar axes for
their random spin measurements on the separated parti-
cles (0', 45', and 90 for one of them and 45, 90, and

135' for the other). In our simplified EPR scheme, the
observers, whom we call Albert and Boris, each choose
randomly between 0' and 90', which we take to define
the x axis ( ) and the z axis (1 ). After a series of EPR
pairs have been prepared and measured, Albert and Boris
announce to each other (and to any adversary, Nathan,
who may be listening) which axes they used, but not the
results of the measurements. They then agree to discard
all instances in which they happened to measure along
different axes, as well as instances in which measure-
ments failed because of imperfect quantum efficiency of
the detectors. The remaining instances, in which both ob-
servers successfully measured the same spin component,
ought to be perfectly correlated, if the measurements
indeed have been performed on singlet states. To verify
that this is so, Albert and Boris publicly compare their
measurement results on a sufficiently large random subset
(more than half) of the undiscarded instances. If Albert
and Boris find that this tested subset is indeed perfectly
correlated, they can infer that the remaining untested
subset is probably also perfectly correlated, and therefore
a suitable source of the shared random number they re-

quire.
Ekert shows that if an adversary attempted to eaves-

drop by performing arbitrary Stern-Gerlach measure-
ments on one or both of the particles on their way from
the EPR source to the legitimate observers, then the
linear combination of correlation coefficients appearing in

the Clauser-Horne-Shimony-Holt [6] version of Bell's in-

equality could have no more than half the value it has in

the undisturbed singlet state. The analogous bound for
our scheme, corresponding to Ekert's Eqs. (5) and (7), is

—
1 ~ S=„p(n",n")dn "dn"

x[(n" x)(n" x)+(n' z)(n" z)] ~ I, (1)
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as opposed to the value ( —I )+ ( —1) = —2 that 5 has in

the undisturbed singlet state.
It might appear that the ultimate security of these pro-

cedures lies in the fact that the EPR effect permits two

unimpeachably random numbers to each make Heisen-
berg's "transition from the possible to the actual" in two

far-apart places and yet be born as identical twins. Since
prior to their miraculous twin birth the numbers do not

exist at all, Nathan is in the hopeless position of trying to
intercept nonexistent information. This, however, is too
superficial a view. The real worry for Albert and Boris is

that the very magic of the mechanism that suggests they
are secure might form the basis for a more sophisticated
attack. For if the numbers can miraculously appear to
each of them in their remote stations, how can they be
sure that Nathan has not substituted for the EPR source
a device that produces three particles, cunningly correlat-
ed so as to allow information to be brought into existence
in three remote places, thereby depositing with Nathan
some or all of the information Albert and Boris acquire?
We shall now prove that such espionage is impossible.

Suppose Nathan deceptively sends Albert and Boris

pairs he has prepared himself, entangled with systems
available to him for subsequent measurements of his own.

(Such source substitution includes as a special case the
direct Stern-Gerlach measurements on the particles after
their emission from an EPR source already discussed, as
well as indirect measurements [7,8) in which Nathan
causes one or both of the EPR particles to interact
coherently with an auxiliary quantum system, to be mea-

sured afterward. ) The most general entangled state
Nathan can prepare is of the form

I+& =11t&l~&+ Il l&l~&+ It l&Ic&+ Il t&ID&,

where I t f ), I l l), I t l ), and I l t ) are a complete orthonor-
mal set of spin states for the pairs being sent to Albert
and Boris, and IA), IB), IC), and ID) are Nathan's
choices for states of his system, which he does not even

have to decide how to measure until after Albert and

Boris have gone public.
Even the complete freedom to design an arbitrary en-

tangled states does Nathan no good. If his tampering is

to escape detection, the state I4) must be an eigenstate of
o-'~ with eigenvalue —I, because any pair has a chance
of both members being measured along the z axis, and

then being included in the test set. To escape detection
with the z test data, Nathan's source is therefore restrict-
ed to states of the form

Ie&=It l&IC)+Il t)ID).

But by the same token any pair might instead be mea-
sured along the x axis by both observers, so IA) must also
be an eigenstate of o„'cr, with eigenvalue —1. This fur-

ther restricts IA) to be of the form

I+& -(I t l&
—

I l1&) lc&

U(Iu&Ia&) =Iu&Ia'&, U(Iv&Ia&) =Iv&Ia"), (3)

where Ia') and Ia") are two other normalized quantum
states of the eavesdropper. But since U is unitary,

(uIv) =(aI(uIv)Ia) =(a'I(uIv)Ia") =(uIv)(a'Ia") . (4)

Thus the only faked source sure of passing Albert's and
Boris's tests is one in which Nathan's system is entirely
uncorrelated with the EPR particles, so that a subsequent
measurement on it tells him nothing.

So although the EPR effect does not in itself guarantee
the security of the scheme, EPR magic cannot be refined
to the point where it undermines that security. Indeed,
the EPR effect is not needed at all for the key distribu-
tion, for the simplified EPR scheme is equivalent to the
original scheme of Bennett and Brassard [5], which em-

ploys only one-particle states.
In the BB84 scheme, a user Alice prepares particles in

a random sequence of the four states I t), I l), I ), and
), and sends them to another user Bob, who, like

Boris, subjects them randomly to measurements of o- or
cr, . Alice and Bob proceed just as Albert and Boris did,
publicly announcing in each instance whether Alice sent z
or x eigenstates (but not which variety) and whether Bob
measured z or x spin components (but not the results of
his measurements). They discard instances in which Bob
measured cr„when Alice sent him I f ) or I l), or measured
o- in instances when Alice sent I ) or I ), and they
test a random subset of the remaining data, on which

they ought to agree if there were no eavesdropping. The
only diA'erence between the two schemes is that Alice's
random data are chosen by her, while Albert's originate
in the random behavior of an EPR particle when he mea-
sures it. If Alice wished, however, she could make her
four-way random choice by producing an EPR pair her-
self and measuring one particle along a random axis (x or
z), letting the other particle, now in a known random one
of the four states, pass to Bob. The resulting modified
BB84 scheme is exactly as strong as the original, since
there is no way to tell outside Alice's laboratory which
scheme she actually uses.

The security of the BB84 scheme can also be demon-
strated directly. The public test in BB84 certifies that
any interaction of an eavesdropper with the particle in
transit to Bob has left undisturbed any of the four states
that Alice might have sent: It&, Il&, I &, and I ).
But any measurement which fails to disturb nonorthogo-
nal states also yields no information about them. For let
the eavesdropper's interaction with the quantum trans-
mission be described by a unitary operator U in the prod-
uct space of the quantum transmission and the eaves-
dropper's measuring apparatus. Let Iu) and Iv) be two
nonorthogonal quantum transmissions, such as It), I ),
and let Ia) be the eavesdropper's initial quantum state.
To evade detection of eavesdropping by Bob, U must
leave both Iu) and Iv) undisturbed so that
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Since (u~v&&0, it follows that (a'~a "& = I, which for nor-

malized states requires that ~a'&=~a "&. So the eaves-

dropper is left in the same state ~a'& after having interact-
ed with ~u& or ~v& or indeed any linear combination, such
as the other two standard transmissions ( J) and

~

Just as in the EPR security theorem, the only attack that
can avoid detection is the one that yields no information.

Thus the apparent differences between the EPR and

BB84 schemes are superficial. %e have disposed of an

apparent weakness of the EPR scheme not shared by
BB84—its susceptibility to source substitution. An ap-
parent weakness of the BB84 scheme not shared by EPR
is the fact that the information sought by the eaves-

dropper exists at the time of eavesdropping, whereas in

the EPR scheme it is only created later. But the ex-
istence or nonexistence of the information at the moment
of espionage is irrelevant. In neither EPR nor BB84 can
the adversary attempt merely to read the information. In

the EPR case, the adversary's only hope is to create infor-
mation that Albert and Boris will read and accept as legi-
timate without realizing that it is now possessed by the
adversary as well. %'e have shown this to be impossible,
because anything but a true singlet, uncorrelated with the
adversary, will reveal the tampering through deviations
from the expected EPR statistics. In the BB84 case, the
information does exist, and an adversary can even learn

part of it, but, because it is encoded in nonorthogonal
states, the adversary can only extract it at the cost of
once again disturbing the expected correlations, tipping
off Alice and Bob to the presence of an eavesdropper.

So far we have treated the individual quantum
transmissions (i.e., launching and measuring a single par-
ticle or EPR pair) as independent events whose results
are combined classically by the legitimate participants for
purposes of testing and key generation, and can also only
be combined classically by an adversary for purposes of
eavesdropping. But Wiesner, in the seminal paper [9]
that originated the use of nonorthogonal states such as

~ t) and
~

) for cryptographic purposes, raised the possi-

bility of a very powerful adversary whose apparatus in-

teracts coherently with the entire sequence of transmis-
sions, treating them all as a single quantum state in the
product space of all the individual experiments and per-
forming an arbitrary indirect measurement on the entire
sequence. Our proofs of security of the EPR and BB84
schemes are easily generalized to cover even such an at-
tack. In the EPR case, the only state of N pairs of parti-
cles that gives correct EPR statistics for each pair is one
~hose projection into the 4 -dimensional Hilbert space of
all pairs is a product of singlets, so any substitute source
except an uninformative product of singlets risks detec-
tion. In the single-particle scheme, the existence of a set
of 2 nonorthogonal states (e.g. , states with some ~t)
particles and some

~
) particles), none of which is sup-

posed to be disturbed by the eavesdropper, and which to-
gether span the entire 2 -dimensional Hilbert space of N

particles, guarantees that the eavesdropper also fails to
learn anything about any N-particle state.

Turning to more practical matters of cryptography, in

any of these schemes, the eavesdropper has a significant
chance of learning a small amount of the key without
detection, e.g. , by eavesdropping on just a few particles,
none of which might happen to fall into the tested subset.
A more useful version of the BB84 scheme which has re-
cently been implemented experimentally [10] replaces the
simple subset test by more sophisticated error-correction
and hashing techniques. This allows Alice and Bob to ar-
rive at a highly secret key even when their raw data have
been compromised by eavesdropping at the statistical
margin of detectability or by other sources of leakage
(e.g. , the use instead of single-photon states of low-

intensity coherent or incoherent light pulses, which can
sometimes be split by an adversary), and even when the
data have been significantly corrupted by eavesdropping
and noisy detectors.
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Note added. —Artur Ekert has recently pointed out to
us that if Albert and Boris postpone measuring their EPR
particles until just before the key is needed, a burglar
breaking into their laboratories and tampering with their
stored particles would risk detection during the subse-

quent eavesdropping test. By contrast, in BB84, Alice's
stored information is purely classical, and a burglar could

copy it at any time without detection.
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