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Simulation of Megabase DNA Undergoing Gel Electrophoresis
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A novel type of simulation has been designed to study the dynamics of long DNA fragments, contain-
ing millions of base pairs, as they migrate during gel electrophoresis. It shows that in a continuous field,
large molecules assume a branched configuration—a behavior qualitatively different from that previous-
ly described for smaller fragments. Simulations in crossed fields reveal a new kind of reorientation
mechanism which explains the well-known but puzzling fact that the power of separation increases
abruptly as the angle between fields is raised above 90° and remains approximately constant for a wide

range of obtuse settings.

PACS numbers: 82.45.+z, 05.40.+j, 36.20.Ey

Despite the phenomenal success of the pulsed-field gel
electrophoresis technique [1] for separating large DNA
fragments, our knowledge of its mechanism remains far
from complete. Theoretical concepts [2,3] based on the
reptation model [4], in which the molecule snakes down a
“tube” formed by the surrounding gel fibers, have indi-
cated that the fragments are oriented by the field. An
equally invaluable source of information has been the
direct simulation of Deutsch [5] which revealed an insta-
bility in the dynamics that leads to the breakdown of the
tube model at rather moderate field strengths. This is as-
sociated with the formation of “hernias,” where a section
of the molecule protrudes from the tube in a doubled-up
loop. It causes the fragment to cycle between U-shaped
and elongated configurations. A number of separate au-
thors [6-12] have established a connection between the
renewal time of molecular conformations and the switch
time used in pulsed-field techniques, but a variety of
mechanisms for renewal have been proposed and which of
these apply to molecules in the megabase (Mb) range,
where development of the technique is most desirable, is
not settled. Clarification of this point requires a more
efficient numerical method.

The Monte Carlo simulation technique is faster than
directly solving equations of motion, but in the past, the
use of local hopping rules based on detailed balance,
directly borrowed from the Monte Carlo method used in
equilibrium statistical mechanics, has limited its applica-
tion to equally small molecules [7]. The problem is that
electrophoresis is intrinsically a nonequilibrium situation
and, while the approximate concept of “‘local detailed bal-
ance” has been shown to describe adequately the dynam-
ics when no energy difference along the chain is much
greater than kT (i.e., small fragments and low fields), it
is insufficient for the more general case [13]. Conse-
quently, we propose a fresh approach which authorizes
variable range hopping with rules based on a dynamical,
rather than equilibrium, argument. This provides a more
comprehensive description since, on the one hand, a
Boltzmann distribution is naturally approached whenever
the overall motion of the molecule is slow enough to allow
the equilibration of internal modes, while on the other,

the rules reproduce the dynamics of an inextensible rope
whenever the chain is stretched taut by the field.

The model is easily pictured. We think of the gel as a
randomly connected three-dimensional network of pores
with uniform diameter a. The DNA molecule is repre-
sented by a chain of NV segments, each of contour length a
and each permitted to be in one of two states (assumed
equally probable at thermal equilibrium): either taut, in
which case it stretches between two pores, or slack, resid-
ing coiled in a single pore. The sequence of pores occu-
pied by the chain forms, in effect, a tube. In de Gennes’
original conception of reptation [4], the overall transla-
tion of the molecule in the tube is a consequence of the
diffusion of regions of excess chain or *“‘length defects”
along the tube axis. By analogy with this description, we
regard each slack segment as a defect and aim to describe
the movement of the molecule by the hopping motion of
the defects along the chain

To derive the hopping rules, we focus our attention on
a fully extended section of the chain immediately adja-
cent to a defect. Such a portion can slide along the tube
contour by pulling tight the slack in the defect; simul-
taneously, excess length will accumulate at the other end
of the portion, generating a new defect there. We there-
by establish the equivalence of a fictitious construct—
defect hopping of range n—and a physical process— the
sliding of a string of n consecutive taut segments through
the distance of one pore. This is analogous to the use of
holes as a convenient description of conduction in semi-
conductors; just as in that case, where one has to deter-
mine the motion of the electrons in order to specify the
dynamics of the holes, here we can deduce the rules for
defect hopping from a consideration of the dynamics of
an inextensible string.

It is straightforward to calculate the resolved force that
a string experiences due to the external field and write the
Smoluchowski equation for its motion along the tube con-
tour, which includes a Brownian term and a friction
coefficient proportional to the string’s length. This can be
solved to obtain a mean time scale for the motion through
a distance of one pore (see also Ref. [14]), inversion of
which yields an intrinsic rate r for a defect hop of range
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n:
= 0x/a

nil —exp(—6x/a)
where @=qgEa/kT and x is the displacement of the hop
measured in the field direction, g the effective charge car-
ried by each segment, E the electric field, and ro a micro-
scopic rate constant. At any instant, a defect typically
has the opportunity to make a variety of hops of different
range, landing anywhere between its present position and
the location of the next defect on the chain. Each possi-
ble hop will have a different likelihood, reflected by its in-
trinsic rate. We propose that, in a fixed short time inter-
val, the overall chance that the defect changes position is
governed by its most likely motion; i.e., the probability of
a move is proportional to the highest intrinsic rate. If a
move is ordained by the draw of a random number, we
then select the range of hop from among the various pos-
sibilities with a probability proportional to its intrinsic
rate. The nature of the approximation involved here is
first to average over the thermal noise to obtain a set of
mean transition rates, then to reinsert randomness by
choosing among the possible jumps. We have checked
that this procedure yields the expected dynamical behav-
ior in particular cases where an analytical argument is
feasible (such as uniformly oriented molecules and frag-
ments extended in U-shaped configurations) as well as the
proper equilibrium statistics in low fields when the chain
is closely Gaussian (the case N6% < 1) [2].

One further rule is added to the model to allow for the
formation of hernias (a similar modification of the tube
model has also been suggested by Zimm [15] and by
Smith, Heller, and Bustamante [16]). Whenever two ad-
jacent defects occupy the same pore, we authorize their
conversion to a pair of taut segments, forming a loop that
makes an excursion into a neighboring pore and returns.
Thereby, subtubes branching off the main tube may be
created and, since hernias can equally well grow out of a
subtube, these branches may, in turn, subdivide. The re-
verse move that eliminates a loop is also permitted. The
rule governing these events must take account of the en-
tropic penalty of a loop, due to the constraint that one of
the segments must retrace the path of the other instead of
visiting a random neighboring pore. We therefore specify
that the ratio of the probabilities of loop formation and
annihilation is 1/z, where z is the average coordination
number of the gel pores. Assuming a random arrange-
ment of uniformly sized pores, z =6.

We have studied the behavior of this model for long
chains in a variety of field conditions, both continuous
and pulsed. To establish a correspondence with experi-
mental data, we estimate that for double-stranded DNA
in 1% agarose each segment corresponds to 1000 base
pairs, 6=1.0 represents a field of order 10 Vcm ~', and
a =300 nm.

In continuous fields, we observe three distinct types of
behavior, depending on the molecular size and the field
strength. For weak fields (6< 1) and short fragments

}r(),

(N <100) the growth of hernias is entropically inhibited
and the motion is consistent with the standard tube model
[2,3]. The mobility varies inversely with molecular
weight and falls to a plateau value as the fragment size
increases. Chains of intermediate size (100 < N < 1000)
display the “inchworm” dynamics discovered by Deutsch
[5), cycling fairly regularly between extended and U-
shaped conformations. In this range, the mobility is in-
dependent of molecular weight. Very long molecules
(N > 1000) have a quite novel comportment, an example
of which is shown in Fig. 1. They adopt ramified con-
figurations in which the main tube is oriented along the
field direction but hernias (also aligned with the field)
branch off it at intervals; those which originate near the
tail of the tube are longer than those at the head. As the
molecule advances, all of the hernias grow simultaneously
until the one most in the rear is released as the trailing
end of the chain passes along it. The subsequent rapid
retraction of the tail transfers slack to the head of the
chain, initiating a new hernia there so that the overall
form of the conformation is preserved. Thus, while there
is a cycle where individual hernias grow and retract, the
global motion is akin to biased reptation [2,3] with large
tube length fluctuations. Inchworm dynamics [5] corre-
sponds to the special case where the chain is not long

a b c d c

FIG. 1. Motion of a chain with N =2000 segments (corre-
sponding to 2 Mb) in a continuous field, strength 6=1.0, ap-
plied in the direction of the arrow. The time between each
snapshot (a-d) is 2000 Monte Carlo units. The scale bar is the
length of 100 pores (corresponding to 30 um). One of the
configurations is redrawn with an expanded horizontal scale to
give a clearer indication of its branched structure, and its head
section is magnified 10 times to show the leading hernias on the
scale of the gel pores.
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FIG. 2. Variation of mobility with pulse time 7T for chains of
size N =100 to N =2000 in a crossed-field simulation; field an-
gle =120°, field strength 6=1.0. The error in the data is less
than 5%.
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enough to support many hernias at the same time. It is
interesting to note that the mobility remains at the same
plateau value throughout.

We now turn our attention to pulsed-field situations.
Figure 2 shows the mobility as a function of switch time
and molecular size for a field angle of 120°. The agree-
ment with the systematic experimental studies of Birren
et al. [17] and Mathew, Smith, and Cantor [18] is very
close. Note that the mobility curves display minima at a
switch time proportional to the molecular weight so that
a clear separation of fragments requires a pulse period
that increases linearly with their size.

A number of different field configurations have been in-
vestigated. As indicated in Fig. 3, we find that a range of
obtuse angles, from 105° to 150°, yield practically identi-
cal patterns of separation. An orthogonal field setting, on
the other hand, differentiates very poorly between frag-
ments. The abrupt improvement in separation above 90°

relative mobility

500 1000
chain length N

FIG. 3. Variation of mobility with chain length /V as a func-
tion of field angle ®. The pulse time is fixed at T=10000, and
the field strength is 6=1.0. The mobility is measured relative
to its value in the limit of very long pulse times: pe
=pocos(®/2), where uo is the continuous-field mobility (in-
dependent of chain length).

is well known in practice [17] but has remained a puzzle
since the inception of the technique. The reason is readi-
ly discerned by watching a film of the simulation at a
pulse time that significantly reduces the mobility at 120°
but not at 90°. While the motion is somewhat irregular
and the types of configurations observed vary from cycle
to cycle, the snapshots reproduced in Fig. 4 are represen-
tative of the most typical behavior during a single pulse.
Immediately before the field is switched, the chain has a
U-shaped conformation; for orthogonal fields, the U has a
broad base formed during the corresponding pulse of the
previous cycle, but at 120° it is usually very narrow.
With the change of field, the chain ends turn to move in
the new direction and simultaneously, hernias sprout
from places where there is a buckle in the tube (it is at
these points that a sudden drop in the field gradient mea-
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FIG. 4. Motion of a chain of size N =1000 during a single pulse in crossed-field electrophoresis with 90° (top row) and 120° (bot-
tom row) field settings. Switch time =6000 Monte Carlo units, field strength 6=1.0, and the field directions are indicated by the ar-
rows. The time 7 is measured from the start of the pulse. The scale bar is the length of 100 pores.
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sured along the tube axis causes an accumulation of
chain, which can then seep out of the tube). Now a
difference arises between the two cases: In the 90° set-
ting there is a fairly even competition between the leading
chain end and the foremost hernia and both continue to
extend until the hernia unravels to produce, at the end of
the pulse, another broad U, displaced further along the
gel: In the 120° case, on the other hand, owing to the ob-
tuse angle, a hernia created at the base of the U starts
with an advantage over the chain end. It soon establishes
superiority and pulls the extremity back into the arm of
the U. Rapid retraction of the chain down the arm is
then driven by (a component of) the field, leading to
bunching near the base which immediately generates
more hernias. The hernias grow, sucking up the rest of
the molecule and finally unwinding so that, at the end of
the pulse, the configuration is once again a narrow U
shape. This behavior is entirely consistent with direct ob-
servations of DNA using fluorescent microscopy [19,20].
We conclude that after an orthogonal field switch the
molecules continue to move forward as they reorient, at a
speed independent of size so that no resolution can be ob-
tained. By contrast, with the use of obtuse angles, the
chains make little progress while they change direction
(they retract backwards at first, then start to move for-
wards, but get held up while hernias resolve into a U
shape); since longer chains take more time to reorient,
their progress is hindered for a longer period and it is this
feature that enables the segregation of fragments accord-
ing to size.

The obtuse angle mechanism has some similarities with
the “ratchet” motion [8,9] previously proposed on the
basis of the biased reptation model [2,3]. However, in
that case it was assumed that the molecules are initially
uniformly aligned and reorient as the hindmost end slides
into a new tube; instead, we find that the chains alternate
between U shapes and the reorientation is mediated by
hernia growth. This difference explains why the resolu-
tion does not vary gradually with the field angle but im-
proves sharply above 90° and remains even for a wide
range of obtuse settings. The reorientation in orthogonal
pulses has some similarities with the competing-hernia
mechanism discussed by Deutsch [21]. However, in com-
mon with experimental observations [22], we find that
numerous hernias form and compete only if an oriented
chain is allowed to relax with the field turned off before
the field switch is made. In standard pulsed-field situa-
tions, by contrast, rather few hernias grow, preferentially
from special locations where the tube is kinked, and the
chain ends tend to dominate reorientation.

In conclusion, this model clearly delineates the
different regimes of motion of DNA in a continuous field
and accounts very well for the most straightforward
pulsed-field technique. Our Monte Carlo method, suit-
ably adapted, may prove to be useful in other problems
concerning systems far from equilibrium, for which direct
solution of the equations of motion is too slow.
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