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Aspects of the Phase Diagram of the Two-Dimensional t-J Model
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The phase diagram of the 2D t-J model is investigated using high-temperature expansions. Series tor
the Helmholtz free energy, the inverse compressibility, the chemical potential, and the uniform spin sus-

ceptibility through tenth order are calculated and analyzed. A region of phase separation is found at
T=O for J/t lying above a line extending 1'rom J/t =3.8 at zero filling to J/t =1.2 at half filling. For
very small J/t near half filling where the Nagaoka effect is possible, we find a region of divergent uni-

form magnetic susceptibility at T=0.

PACS numbers: 74.65.+n, 7 I. 1 0.+x, 74.20.—z, 74.70.Vy

A theoretical model describing the copper oxide planes
common to all the high-temperature superconductors is of
central importance to understanding the physics of these
materials. The simplest description of the planes is the
t-J model on a square lattice [1,2]. As a result of the
projection of doubly occupied states from the Hilbert
space the t-J model is inherently in the strong coupling
limit. A wide variety of techniques have been used to
study this problem: slave bosons, variational Monte Car-
lo, quantum Monte Carlo, and exact diagonalization
methods [3], with varying success. In one dimension
(I D) the t Jmodel -is now well understood. The ground-
state properties have been calculated by the Bethe-ansatz
technique [4] at J/t =2, and at other values of J/t by
Ogata et al. [5] using numerical diagonalization of six-
teen-site chains. In two dimensions (2D) much less is

known. In this Letter we investigate the phase diagram
for the 20 t-J model on a square lattice by means of
high-temperature expansions.

High-temperature expansions have been used success-
fully for many years to investigate spin systems [61, but
have not been widely applied to models of correlated elec-
trons. For the Hubbard model with arbitrary U only a
fourth-order series has been calculated [7]. In the limit
of infinite spatial dimensions Thompson and co-workers
[8] derived a tenth-order expansion for the U=~ Hub-
bard model. For this case Kubo and Tada [9] generated
ninth-order expansions for a number of 20 and 30 lat-
tices. For bipartite lattices these expansions have only
even terms, which makes the analysis di%cult. The t-J
model for arbitrary t, j, and electron density n does not
have this problem so we can extract more information
from a series of comparable length. In addition, t and J
are of the same order of magnitude, unlike t and U for
the strong coupling Hubbard model. Projecting out dou-

bly occupied sites avoids having two widely separated en-

ergy scales. The series for the Heisenberg model [6] and
those generated by Kubo and Tada [9] provide checks on

our calculations.
We generate the high-temperature expansion of the

thermodynamic potential 0 for the t-J model by the fi-

nite cluster method [6], and by standard relations obtain

the thermodynamic quantities in which we are interested.
The Hamiltonian of the t-J model in an applied uniform
magnetic field is

—gp8It QS;- —p gn, ,

with the constraint of no doubly occupied sites. After
calculating 0 we use the thermodynamic relation
= —80/8p to find a series for n at fixed p. Inverting
this series allows us to substitute n for p. All of the series
considered later have coeScients which are homogeneous
functions of t and J multiplied by exact polynomials
in n: C; =g,'=Oc;, (n)t' 'Jl. Calculating the expansion
through tenth order requires 679 clusters [10]. The clus-
ters are evaluated by a Fortran program, requiring —700
h of CPU time on an IBM 3090. We then generate series
for thermodynamic quantities with the symbolic manipu-
lation program MAPLE [11],running on a Cray YMP.

We are interested in estimating properties of the t-J
model at T=O and need the analytic continuation of the
Taylor series in I/T beyond their radius of convergence.
The analytic continuations are obtained using Pade and

integral approximants [6,12]. Estimating T=0 values is

only possible if there is no intervening phase transition at
T & 0. In general the possibility of a phase transition at
T & 0 must be investigated before extending the series re-
sults to T=O. The minimum temperature we can extrap-
olate to varies with J/t, n, and the quantity being con-
sidered. The most accurate extrapolations can be made
for the Helmholtz f'ree energy F, where for J/t = 0.3 and
n =0.9 we can reach T—t/5. This is due to the
monotonic temperature dependence and the entropy, .5'

= —dF/ "dT, being zero at T=O The complete series.
and further details of the cluster method and the analysis
will be given in a future publication [13]. The entropy
and a comparison of our estimates for the ground-state
energy to numerical diagonalization will be given in Ref.
[14].

We investigate phase separation for the t-J model on a
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square lattice by calculating series for F, p, and the in-
verse compressibility, I/n «. =clp/Bn. In 2D there is the
possibility that phase separation occurs at T&0. One
would expect the 2D t-J model for large J and high tem-
peratures to behave like a lattice gas model, which is
equivalent to the 2D Ising model [15] with T,. & 0. In the
limit J/t ~ where phase separation is most favored we
can approximate the I-J model as a lattice gas model with
an effective interaction between = —J/2 at low temper-
atures and = —J/4 at high temperatures, leading to a
critical temperature T, -J/6. . The inverse compressibili-
ty goes to zero at the critical point and along the spinodal
line. By considering both integral approximants for the
compressibility series and Pade approximants for the
logarithmic derivative of the compressibility series for
J/t ~ we find that the poles of the approximants do
not give a well-converged value of the transition tempera-
ture. However, values of T, +J/5 are diIIicult to detect
with our current series. Since the estimated T,. for
J/t ~ is in this range and increasing t should lower
T, , we cannot determine reliable values for T,

To search for phase separation at T=O we calculate
integral approximants [12] for F, p, and I/tc starting
from small J/t outside the region of phase separation.
From the integral approximants we can estimate T=O
values for these thermodynamic quantities. %here phase
separation takes places F is linear in density, p is in-
dependent of density for fixed J/t, and I/tr is zero. As a
test of our method we use tenth-order expansions to cal-
culate the phase-separation line for the 1D t-J model. In
Fig. 1(a) the results are compared to those of Ogata et
al. [5]. Our curve is a little more vertical, but the overall
agreement is quite good. Using the same method for the
2D t-J model we find the phase-separation line sho~n in

Fig. 1(b).
Comparing phase separation in 1D and 2D we see that

they are quite diA'erent. For the 1D t-J model the phase-
separation line is in the relatively narrow range between
J/t =2.7 as n 0 and J/t =3.5 near half filling [5],
while in 2D it extends from J/t =3.8 as n 0 to J/t
=1.2 near half filling. The slope of the phase-separation
line depends on which instability of the fully phase-
separated state occurs first. If the phase-separated state
is first unstable to inserting holes into the fully occupied
region as J/t is decreased, the slope is positive. Other-
wise, if the phase-separated state is first unstable to elec-
trons appearing in the empty region, the slope is negative.
For the 1D t Jmodel Og-ata et al [5] showed . that the in-
stability to insertion of holes into the Heisenberg chain
occurs at a larger value of J/t than the evaporation of
pairs, which is consistent with the 1D phase-separation
line having positive slope. In 2D Emery and co-workers
[16] showed that at low densities the fully phase-
separated state is first unstable to evaporation of pairs at
J/t =3.828. We thus expect the slope of the phase-
separation line to be negative, which agrees with our re-
sults shown in Fig. 1(b). For the 2D t Jmodel in the-
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FIG. 1. (a) T=O phase-separation line for the 1 D t-J model.
The solid line is the high-temperature expansion result and the
dashed line is the result of Ref. [5]. (b) T=O phase-separation
estimates for the 2D t-J model. The solid line is the high-
temperature expansion result. The points are from Ref. [16]
and the dashed line is from Ref. [26]. Note that the dashed line
is the boundary between a ferromagnetic region for small J/t
and a phase-separated region for large J/t

phase-separated region one of the phases will always be
the fully occupied phase. This difference between I D and
2D is due to the larger spin disturbance around a hole in

2D. Prelovsek, Bonca, and Sega [17] have found that
adding a longer-range spin exchange (chosen in a way to
favor Neel order) in a 1D model causes much larger spin
disturbances and changes the slope of the phase-sep-
aration line from positive to negative.

For values of J/t less than 1.2 we find no tendency for
the t-J model to phase separate. I n particular for
J/t =0.3 and n=0.8, values of the phase diagram pa-
rameters of interest for the copper oxide planes, our
method gives a finite value of x for all T. These results
are consistent with recent quantum Monte Carlo calcula-
tions showing no phase separation for the 2D Hubbard
model [18].

At T=O for small J/t and near half filling there is the
possibility of long-range ferromagnetic order in the 2D
t Jmodel. For J-=O and one hole, Nagaoka [19] proved
that the exact ground state is a fully polarized ferromag-
net. It is not known if this state remains the ground state
for finite hole density. For J=O the instability of the
Nagaoka state to a single spin flip has been investigated
by variational wave functions [20]. In particular von der
Linden and Edwards [20] obtained a lower bound on the
density for the Nagaoka state of n =0.71. Yedidia [21]
has pointed out that near n= ["[ the high-temperature
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expansion for the spin susceptibility of the U =~ Hub-
bard model is approximately the same as free spins. Re-
cently, Zhang, Abrahams, and Kotliar [22] have calculat-
ed by the quantum Monte Carlo method the average
magnetization per electron for J =0. They find that
the magnetization decays exponentially away from half
filling.

We have calculated the high-temperature expansion for
the uniform spin susceptibility go through tenth order.
Assuming a power-law singularity of the form
go=A(Pt)" we can form the biased logarithmic deriva-
tive

d(Pr)
( )

lngo=y. (2)

To estimate y we calculate diagonal Pade approximants
for the resulting series. The part of the phase diagram
where y~ I is enclosed by the solid line in Fig. 2. Out-
side of this region we still find y & 0, but for smaller y the
Pade approximants are not well converged and the y=0
boundary is diScult to determine. Near half filling we
can estimate the y=0 line by the [5/5] Pade approxi-
mant, indicated by the dashed line in Fig. 2. At lower
densities we do not have su%cient accuracy to estimate
the y=0 line. The largest value of y we observe is y= 1.2, with y falling rapidly as J/t is increased. For the
2D ferromagnetic Heisenberg model the calculations of
Takahashi [23] give an exponential divergence for the
susceptibility at T=O. The strength of the divergence we
see is much weaker. In light of the results of Zhang,
Abrahams, and Kotliar [22] this might be due to the
average magnetization per electron being much less than
1. Another possibility is that we are not at low enough
temperatures to see a decrease in the value of y. Howev-
er, our results are in agreement with a recent numerical
diagonalization study of the Drude weight for the t-J
model [24] and variational Monte Carlo results [25].
Further calculations are underway to directly estimate
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FIG. 2. The part of the phase diagram near half filling and

at small J/t showing the region of divergent uniform magnetic
spin susceptibility at T=O estimated by the logarithmic deriva-
tive of the high-temperature series. The solid line is @=1 and

the dashed line is an estimate of y=O.
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the moment in this region.
We now compare our results to previous calculations

for the phase diagram of the 2D t-J model. The line for
phase separation has previously been estimated by Emery
and co-workers [161 and by Marder, Papanicolaou, and
Psaltakis [26]. Both groups find phase separation for all

values of J/t T. he latter calculation is a 1/5 expansion
modifying some of the commutation relations for the
Hubbard operators. The effects of this modification are
diScult to judge, but omitting the fermion sign of the
electrons from the calculation of the high-temperature
expansion we arrive at a phase diagram similar to Ref.
[26]. Such an approximation greatly overestimates the
size of the ferromagnetic region and gives phase separa-
tion at smaller J/r than we find. Their Eq. (3.12) is plot-
ted in Fig. 1(b).

The calculation of Emery and co-workers [16] is based
on two parts: estimates of phase separation derived from
exact diagonalization of a 4x4 cluster and the arguments
of Visscher [27] and loff'e and Larkin [28] at small J/r.
The data points of Ref. [16] are shown in Fig. 1(b). For
J/1+1 our results are in agreement with Ref. [16]. At
small hole doping the odd-even effects on a 4&4 lattice
are of the same size as the size of the minimum of the en-

ergy per electron so caution is needed in interpreting the
results. For J/r «1 and for a small density of holes loA'e

and Larkin [28] showed that it is not possible to have a

uniform paramagnetic phase in equilibrium with a fully
spin-polarized ferromagnetic phase. Their argument is

based upon the thermodynamic requirement that p and
the pressure P be the same in equilibrium. Since the
bandwidth for the paramagnetic phase is smaller than for
the ferromagnet most holes enter the ferromagnet to bal-
ance p. This gives a value P-t in the ferromagnet and
P-J in the paramagnetic phase. Thus for J&&t equilib-
rium cannot be reached and the system phase separates
with all the holes in the ferromagnetic phase. However,
loffe and Larkin [28] also point out that this argument
does not hold if there is an intervening ferrimagnetic
phase. The system can then remain in equilibrium
without phase separating. With the results of Zhang,
Abrahams, and Kotliar [22] this may explain our inabili-

ty to detect phase separation at J/r + 1 and 1
—n «1.

In conclusion we have investigated the phase diagram
of the 2D t-J model by high-temperature expansions. A

line of phase separation extends from J/t =3.8 as n -- 0
to J/t =1.2 near half filling. For the range of parameters
of interest for the copper oxide planes we find no evidence
for phase separation. At J/r « I and 1

—n « I we find a
region of divergent uniform magnetic spin susceptibility.
The detailed properties of this part of the phase diagram
are not clear at present. The t-J model parameters
relevant for the high-temperature superconductors are in

a part of the phase diagram where the uniform spin sus-

ceptibility is decreasing and the compressibility is in-

creasing, indicating a crossover from predominantly
repulsive interactions to attractive interactions as J/i in-
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creases.
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