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Electron-Phonon Coupling and Superconductivity in Alkali-Intercalated C6o Solid
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We propose that superconductivity in A3C&p (A =K, Rb) with T, ) 30 K results from a favorable
combination of high phonon frequencies and the existence of two different energy scales optimizing the
coupling constant X =)VV. Calculations show that electron scattering V is dominated by particular on-
ball Jahn-Teller-type modes on the scale of the large on-ball z-hopping energy, while the density of
states lV is controlled by the weak interball hopping energy. This factorization has several observed ex-
perimental consequences. Crucial differences to intercalated graphite explain the much smaller T,
values in the graphite compounds.

PACS numbers: 74.20.—z, 71.25.—s, 71.38.+i, 71.45.Nt

Recently, superconductivity has been observed in crys-
talline "electron-doped" 33C6p "fullerite" compounds
(A =K, Rb, Cs), with superconducting transition temper-
ature T, exceeding 3.0 K [1]. Several theoretical models
have been proposed to account for this observation [2-7].
Here we report a detailed study of the electron and pho-
non states and the coupling between them. In particular,
we carried out a comparative study of intercalated fuller-
ite and of graphite intercalation compounds (GIC) which
exhibit a significantly lower T, value (T, =1 K). This
comparison helps us to identify possible coupling channels
which could be responsible for the high T,. in C6p com-
pounds.

In our study we concentrate on C6p, neglecting the
direct influence of the alkali atoms, an approximation
which we will justify. We find that the coupling V in C6p
is dominated by on-ball modes of Hg and Ag symmetry.
The coupling is about evenly distributed over lower fre-

quency, predominantly radial modes and higher frequen-

cy, predominantly tangential modes. The strength of the
coupling can be evaluated from Jahn-Teller-type con-
siderations and amounts to about 40 meV per C6p. The
scale of this value of V is set by the large on-ball n-

electron hopping matrix elements. In fact, V is enhanced

by the finite curvature of C6p which allows for even

stronger a-hopping admixture. These results for an iso-

lated C6p are only slightly modified (( 10%) when C6p is

placed into a weakly coupled fullerite lattice. For the
electron-phonon coupling strength k, this energy V is

combined with the conduction-electron density of states,
the scale of which is set by the weak interball hopping.
Using average values for lV(sF) = 15 states/eV-spin-C6p,
estimated from band-structure calculations for fcc Cqp

and from a variety of experiments (see below), we obtain
A, =0.6, which is well within the range of what is needed
for T, = 30 K. To strengthen the argument we compare
the electron-phonon coupling in fullerite with intercalated
graphite. Our study shows two main diflerences between

these compounds: (i) The graphite modes equivalent to
the lower-frequency buckling-type modes of C6p do not

couple at all to n electrons at the Fermi surface of graph-
ite to!&rst order, and (ii) the higher-frequency tangential
modes couple less efficiently. This resu1ts from geometry:
The finite curvature of C6p allows for finite o-z admix-
tures. As a consequence, k and T,. are much smaller in

the GIC. This leaves us with a rather unique situation in

C|,p where X is factorized into an intramolecular quantity
V and an intermolecular quantity Ã. Several experimen-
tal observations, to be discussed below, support this pic-
ture.

We begin our studies with a local-density-approxi-
mation- (LDA-) density-functional calculation for fcc
C6p which essentially confirms what is known about the
electronic structure [8]. Of importance here are the fol-

lowing points: (i) The conduction-band states are derived
from a threefold-degenerate t 1 „ level of C6p which
broadens into a -0.5-eV-wide band. (ii) The t ~„-derived
conduction states are predominant1y z states, centered at
the carbon atoms and pointing nearly radially outwards.
There is some finite (a few percent) s,p admixture due
to the finite curvature of C6p. We can continue our inves-

tigation for pure fcc Cqp, assuming that the three alkali-
metal electrons of 33C6p are donated into the t]„band.
Reference to calculations by Martins and Troullier [8]
for K3C6p indicates only small hybridization eAects,
which makes our model essentially correct.

We then proceed with a semiempirical (s,p„p, p )
tight-binding (ETB) approach, the parameters of which

were fitted to a large LDA data base of carbon molecules
and solid structures. Details of this Hamiltonian are pub-
lished elsewhere [9]. For C6p its predictions agree well

with LDA results (e.g. , the overall bandwidth, the density
of states, and the symmetry of states near the gap). With
this Hamiltonian we not only calculate band structures,
but we also obtain the approximate deformation poten-
tials for electronic states. The additional ingredient here
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is a d " scaling of all hopping matrix elements with

interatomic distance d. Tests against LDA results indi-

cate n = 2-3. Typical values for on-ball nearest-neighbor
atomic deformation potentials range between —4 eV/A
for pptr up to —10 eV/A for ppo, which includes the
eff'ects of electronic screening. Interball hopping is only

approximately described in our ETB approach. To repro-
duce the LDA t 1„-derived bandwidth the individual inter-
ball hopping matrix elements can be appropriately scaled
and become about a factor of 5 smaller than the corre-
sponding on-ball hopping matrix elements. The corre-
sponding deformation potentials due to interball vibra-
tions are consequently also reduced by this factor. To
calculate the electron-phonon coupling strength V we can,
therefore, neglect interball hopping to first order. How-

ever, the conduction-band width, the Fermi surface, and
the exact shape of the density of states near eF do depend
on details of interball hopping. Because of uncertainties
in the relative rotational arrangements of C60 molecules
these quantities cannot be calculated reliably at present,
and we will therefore consider reasonable ranges of possi-
ble values of densities of states (see below).

To determine the vibrational modes of the system we

use an extension of the simple Keating model [10]. We
start with the isolated C6o for which we use two nearest-
neighbor on-ball elastic constants a,P with a bond-

stretching to bond-bending ratio ranging from 3:1 to 10:1
that covers the range appropriate for carbon. For com-
parison we also use the results of independent bond-
charge model calculations [I I]. Results for modes
relevant for electron-phonon coupling will be given in

Table I. The on-ball modes are distributed in a some-
what bimodal fashion. Modes with predominantly radial
displacements are at the lower end of the spectrum, while

the high-frequency modes are characterized by tangentia1
displacements. There is some analogy to graphite, where
the optical layer stretching modes are near 1600 cm
while the buckling modes occupy the lower end of the
spectrum. To test the magnitudes of interball scattering,
we did add more empirical spring constants to model the
ultralow-frequency librational modes in the 10-cm ' re-
girne, the C60 interball optical modes in the 100-cm re-
gime, and the alkali optical modes in the 100-cm re-
gime. The resulting contributions are small and will be
neglected.

The dimensionless electron-phonon coupling constant
used in the theory of superconductivity is given by [12]

((l'))
k =N(eF) V=N(sF)g (I)

V MNtr

where the sum runs over all vibrational modes v of the
system, and where the double brackets denote a double
Fermi-surface average over (k, k') of the quantity

I'i(k, k') =pe', t(k)*ci t (k')QI[u, (v, q)e' —u, (v, q)e'" ]b'(k —k' q), — (2)
r, l R

r ', I'

where q =k —k' is the phonon wave vector. The sum over [r, l], fr', l'] runs over all orbitals (l) and sites (r ) of the elec-
tronic Hamiltonian, and c,t(k) are the eigenvector components for state i at wave vector k. The vibrational eigenvectors
u, (v, q) for moving the atom r along [x,y, z] are multiplied by the intrinsic electron-phonon coupling matrix elements
between the individual orbitals

I=I,t, tti, 7 =V, (yt(r —r ) iH iyt (r —R —r')), (3)

where the gradient is taken with regard to atom position
r. The normalization P, iu, i

= I requires that the
density of states in Eq. (I ) be normalized to states per
eV, per spin, and per C60 formula unit.

Because of the weak coupling between balls, we can
carry out the double Fermi-surface integral in Eq. (I)
analytically in the limit of t;„«,/t;„&,„0.((I„)) in Eq. .
(I) then becomes —„' P; Jil„"(0)i . This involves only on-
ball electron-phonon coupling and V can, therefore, be re-
lated to the Jahn-Teller problem of a negatively charged
C60 cluster, details of which are given elsewhere [13].
Group theory tells us that only fivefold-degenerate Hg
modes and onefold-degenerate A~ modes can couple to
the t]„electronic states. For these symmetries, the con-
tributions to V in Eq. (I) are '„EjT(H») and
x FJT(A» ), respectively [I3], where EqT is the energy
lowering due to distortions of C60 induced by one added
electron.

Using the ETB wave functions and the different pho-
non models, we calculate [14] V=40 meV per C60. De-

c)tpt
V

Bond charge
(Ref. [I I])

Ny V,

Keating
P/a =0.3
v Vv

Keating
P/c =0.1

cu, V,

H»(l) 273 271
H»(2) 437 410
H»(3) 7 10 718
H»(4) 744 793
H»(5) 1099 1157
H»(6) 1250 1218
Hg (7) 1428 1452
H„(8) 1575 1691

A» ( I ) 497 499
3 (2) 1469 1455

995

3.0
2.4
6.0
4.8
0.0
0.6
7.0
8.4

0.0
5.0

37.2

298
411
621
766

1162
1226
1500
1718

476
1452

874

4.0 250
4.0 347

11.0 444
4.6 774
0 0 1145
0 0 1299
4.2 1662

10.0 1718

0.0 492
5.2 1678

43.0
797

0.0
2.2

20.0
1.6
0.0
0.0
0.8

13.0

0.0
4.0

41.6

TABLE I. Experimental [15] and calculated H» and A» pho-
non frequencies ro, (in cm '). Results are given for three
diAerent phonon models (see text). The individual mode-

coupling constants V„(in meV), the total coupling strength V

[Eq. (I)], and the weighted (logarithmic) average phonon fre-

quency coi,» (in cm ') [Eq. (4)] are also given [14].
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tailed couplings to the eight Hg modes and two Ag modes
are given in Table I, together with the corresponding pho-
non frequencies. For comparison, experimental [15] Ra-
man mode frequencies are also given. The coupling
values for a given phonon model have also been tested by
selective LDA frozen phonon calculations. Details will be
given in a later publication. For all phonon models there
is appreciable coupling both to the lower-frequency buck-
ling modes as well as to the higher-frequency tangential
modes. This is in contrast to the results of Ref. [7],
where -80% of the coupling was attributed to the two
highest H„modes. The q =k —k' dependence of the
scattering is generally not important since the strength is

given by the relatively dispersionless on-ball vibrations.
For the H~ Jahn-Teller modes the scattering is dominated
by the interband terms (within t~„) including q =0. For
the A„symmetric modes, q =0 scattering is zero since it

corresponds to a coherent overall shift of all electronic
levels. For finite wave vector q&0, A~ mode scattering
(interball) is finite, with its scale again given by the on-

ba 1 1 coupling.
The question of the size of N(eF) in Eq. (1) is largely

unsettled at this point. Estimates range from values of
1-2 states/eV-spin-C6o derived from photoemission data
[16], to values of -6-20 derived from band-structure
calculations [8], up to values of 10-15 and ) 20 inferred
from susceptibility [17] and NMR [18] data, respective-
ly. If we assume an average value of N(sr:) = 15, we ar-
rive at values of X = 0.6 for the electron-phonon coupling
strength. The average temperature h(oi„s/kii appearing
in McMillan's [19] formula for T, ,

~ log —1.04(I +~)
T( exp1.2k' y —p

* —0.62k p
* (4)

can be evaluated for each of the phonon models (see
Table I) and is found to be very high, of the order of
1150 to 1450 K. This, when combined with a p*
= 0.1-0.2 [6,20], yields T, values (i.e., ra.nging from 5 to
35 K) within the range of the experimentally observed
values of T, .

In order to establish the validity of our model in view

of the typical, sizable uncertainties in X, we attempt to
explain the large and qualitative difference between su-

perconductivity in the intercalated C6p solid and graphite
intercalation compounds. Published values [21] for
N(sF) in GIC are similar to the lower range of values for
C&o (normalized per atom). The key difference is found
in the electron-phonon coupling strength. Since the
graphite sheets are flat, the lower-energy buckling-type
modes do not couple in first order to the x electrons near

The electron-phonon coupling in graphite is solely
caused by the high-frequency optic modes, augmented by
weak hybridization with intercalant orbitals and by inter-
layer effects. We calculate k using the identical pro-
cedure as for C6p and find it to be reduced by about a fac-
tor of 5 as compared to C6p.
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We conclude on the basis of these calculations that the
observed superconductivity in alkali-intercalated C(,p
compounds can be understood in terms of electron-
phonon coupling. The main ingredients are strongly
scattering on-ball modes set by the on-ball hopping ener-

gy scale, a density of states at ~F set by the low interball

hopping energy scale, and a high average phonon fre-

quency reflecting the light carbon mass combined with

stiff on-ball modes. The result is a factorization of

X =O'V into interball and intraball quantities. This sim-

ple picture is beautifully confirmed by several experimen-
tal observations. First, for a given compound, T, de-
creases drastically with increasing pressure [22], which

can be explained by the large compressibility of fullerite,
leaving individual C~p molecules and therefore V, hem~„~

largely unchanged, but resulting in a decreased density of
states N with decreasing interball distance. Second, the
observed [23] increase in T, with .increasing alkali-
intercalant size again supports the same density-of-states
argument. In fact, these and the pressure experiments
can be explained rather quantitatively assuming simply
that X =NV with N -t;„&„', -d" (.n = 2-3) as is common-

ly done for p-electron overlaps. Then, the same values of
(k,p*) needed to explain the absolute value of T, also de-.
scribe the variation of T, between K~Cqp and Rb2CsC6p,
solely on the basis of interball distance (d) variation [231.
A further confirmation of the picture can be found in the
apparent disappearance of on-ball Raman phonon lines
with metallic intercalation [24], which was first pointed
out by Varma, Zaanen, and Raghavachari [7]. The
strong on-ball electron-phonon coupling V yields an in-

creased phonon linewidth for selected modes, calculated
by us to be of order 5%-10% of the phonon frequency
which should wash out most of their spectral features.
individual widths can be extracted from Table I. For

q =0, only H~ modes should be broadened, as is clearly
seen in Raman scattering [23]. However, for finite q, 3,,
modes should also be affected. This should be observable
in neutron or two-photon Raman scattering experiments.

Finally, we would like to caution that the scenario
developed here does not allow T, to be increased much
further. One is approaching the limit ~here the electron
kinetic energy is so sma)1 that it becomes comparable
with the average phonon energy Ace[„~, and Migdal's ap-
proximation for calculating T, breaks down [25]. F.ur-

thermore, as the lattice constant of intercalated fullerite
is increased, one is approaching the limit where the de-

creasing interball bandwidth becomes comparable with

on-ball Coulomb interactions. At this point the effective
one-electron picture used here breaks down and magnetic
instabilities are expected to occur.
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