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It is proposed that the mass of a particle be defined by its de Broglie frequency, measured as ¢ /X yv,
where X is the mean de Broglie wavelength of the particle when it has mean speed v and Lorentz factor
y; the masses of systems too large to have a measurable X are then to be derived by specifying the usual
inertial and additive properties of mass. This avoids the use of an arbitrary macroscopic standard such
as the prototype kilogram, and does not even require the choice of a specific particle as a mass standard.
Suggestions are made as to how this absolute mass can be realized and measured at the macroscopic lev-
el and comments are made on the effect of the new definition on the form of the equations of physics.

PACS numbers: 06.20.Fn, 06.20.Hq, 06.30.Dr

Among the three fundamental quantities of physics
—time, length, and mass—time is now defined in terms
of a chosen atomic standard frequency (at present, that
of the '*3Cs ground-state hyperfine transition) and length
via a defined value of ¢, the velocity of light in vacuo, but
there is not yet an agreed atomic standard of mass [1,2].
Inertial masses are specified only in a relative manner,
the ratio of two masses being defined as the inverse of the
ratio of their accelerations when they are subjected to the
same force, and so it is necessary to specify an arbitrary
standard of mass, namely, that of a certain piece of
platinum-iridium alloy, the prototype kilogram, carefully
preserved at the Bureau Internationale des Poids et Me-
sures at Sévres, France. (In practice [3], one makes use
of the principle of equivalence and the assumption of the
additivity of mass, and compares gravitational masses.)
In this paper we propose an operational definition of mass
which is absolute—that is, does not need an arbitrary
standard (other than the standards of time and length)
—and which, thanks to the achievements of modern
metrology, can be accurately related to the conventional
SI definition.

In classical mechanics, the fact that the conventional
SI mass (hereafter denoted by 1) is defined only relative-
ly implies that classical equations remain unaltered if we
multiply all masses—and all quantities proportional to
mass, such as kinetic energy and momentum— by an ar-
bitrary factor; that is, 77 has an arbitrary scale and arbi-
trary dimension M. [If explicit expressions for forces, po-
tential energies, etc., are used, the coupling constants e'z,
G, etc. (see below) must also be scaled by the same factor
or its reciprocal.] In quantum mechanics, on the other
hand, m cannot be arbitrarily scaled in this way; but
quantum equations can always be rearranged so that any
m (or quantity proportional to mass) appears as (or is
proportional to) the ratio 71/h—or as the dimensionally
more convenient quantity mc 2/k, which will be referred
to as the de Broglie (angular) frequency [4].

It is proposed that the ““natural mass” m of a particle
be defined [5] as its de Broglie frequency. Operationally,
m can be determined (independently of /#77) by measuring

the mean reduced de Broglie wavelength X =1/2rx of a
beam of almost monoenergetic particles with known
mean speed v relative to the observer and using the
definition

m=c?*/Xyv

[where y=(1—0v?%/c?) ~'72]; according to the de Broglie
wavelength relation X =h/myv, the quantity m should be
constant and related to 1 by m =mc?/h.

This definition of mass has a number of advantages.
First, there is no need to specify and preserve an arbitrary
macroscopic mass standard, or even to choose a particu-
lar kind of particle as the standard. It is an absolute
definition of mass, rather than merely a definition of mass
ratios, and eliminates the unspecified dimension M of m
from physical quantities. Finally, the definition is entire-
ly in terms of kinematic quantities—time and length
— which can be referred directly to the SI standards and
measured with great accuracy. Mass is defined here in
terms of frequency, the physical quantity which can be
measured with the highest precision—although, of
course, the value of m, even for the electron, the lightest
accessible material particle, is far too high to be mea-
sured directly, and one must make use of submultiples of
the frequency, such as are provided by measurements of
the de Broglie wavelengths of slow particles.

Any definition must, of course, be checked for con-
sistency and uniqueness. In particular, one must ask
whether the above definition is consistent with the two re-
quired properties of mass, namely, its inertial property
(acceleration inversely proportional to mass for a given
force) and its additive property (mass of composite sys-
tem equal to the sum of masses of constituents minus the
mass equivalent of their binding energy). The first prop-
erty is used in the conventional definition and measure-
ment of mass ratios, and the second is an empirical result
which amounts to a combination of the law of conserva-
tion of energy with Einstein’s mass-energy equivalence
relation; both properties are needed here in order to ex-
tend the definition of absolute mass to systems whose de
Broglie wavelengths cannot be directly measured.
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Formally, the consistency of the definition follows from
the fact that all we have done is to exploit the arbitrari-
ness in the scale of SI mass 7, that is, to multiply both
sides of conventional physics equations by common fac-
tors involving ¢ and A and to refer to the frequencies
m;=m,c?/h that appear as “absolute masses.” It is nev-
ertheless very desirable to carry out certain experimental
checks. The constancy of Xyv for a given particle— that
is, the validity of the de Broglie relation—should be test-
ed as accurately as possible. One should, moreover,
check experimentally that the ratios of m values obtained
from direct de Broglie wavelength measurements on par-
ticles and composite systems are indeed equal to the ra-
tios of the corresponding conventional /7 values obtained
by assuming the inertial and additive properties of mass
(for example, from mass spectrometer or nuclear reaction
studies). For composite systems such as *He, *He, and
H, the additivity of de Broglie frequencies has so far been
directly checked to an accuracy of about 1% [6].

The required constancy of the ratio 72/m is tantamount
to the assumption that Planck’s constant A is the same
for all particles; a recent study [7] of the measured values
of A derived from various phenomena involving elec-
tromagnetic radiation (#,), the electron (h,), and the
neutron (%,) concludes that

he/h,=1+@B0£13)x10 7%,
hn/h,=1+(1£40)x107*

(the errors corresponding to 1 standard deviation), so
that

he/h,=1+(23%+42)x1078,

consistent with a value of 4 independent of the type of
particle.

We now turn to the question of the practical realiza-
tion of the definition, which in the first instance applies
only to elementary particles and other systems whose de
Broglie wavelengths can be directly measured; one needs
a chain of measurements leading all the way from such
light objects to macroscopic objects which can serve as
practical secondary standards.

The best starting point for the chain is the neutron, for
which corresponding values of mean X and v can be mea-
sured with high accuracy and with relatively little correc-
tion for the effects of stray external fields; indeed, one of
the main reasons for making this proposal now has been
the recent precision measurement [8] of Xyv for slow
neutrons by Kriiger, Nistler, and Weirauch of the
Physikalisch-Technische Bundesanstalt (PTB) at Braun-
schweig, Germany. Working with the high-flux reactor
at the Institut Laue-Langevin in Grenoble, they measured
Xy0 =6.2962243(25)x10 "% m?s~!, thus determining
the absolute mass of the neutron as

m, =1.42745102(57)x10%*s ™' (0.4 ppm) ,

and they anticipate that, with further refinements, the un-
certainty can be made even smaller.

From this measurement one can find the masses of oth-
er particles and atomic systems by using accurately mea-
sured mass ratios and the assumption of the additivity of
mass in composite systems, with appropriate corrections
for binding energy. High-precision mass spectrometry
and nuclear reaction Q-value measurements provide
values of atomic masses, relative to the neutron mass,
with uncertainties which, in many cases, are of order 0.05
ppm or better [9].

Given accurate measurements of the absolute masses of
neutral atoms, one could then construct secondary stan-
dards for use in macroscopic mass measurements
—crystals of accurately measured volume and lattice
spacing for which one can determine the number of
atoms, and hence the mass of the crystal by additivity.
(The binding energy of an atom of mass number A4 in a
crystal is very small compared with the atomic mass [a
few eV compared with ~A4(10° eV)] and could be ig-
nored in the context of the presently available accuracy of
my.)

The metrological problems involved in constructing
such secondary standards are similar to those encoun-
tered in the equivalent task of determining Avogadro’s
number, and can be tackled in a similar way [10]. That
procedure is based on the precise determination [11] of a
well-defined length in the angstrom range: the (220) lat-
tice spacing of a silicon crystal with specified isotopic
abundances (also used in the m, measurement [8]),
determined so far to 0.2-ppm precision by optical mea-
surement of the shift of x-ray fringes in a Bonse-Hart in-
terferometer [12]. The volume of the crystal can be ob-
tained by interferometric methods— either directly or by
comparison of its buoyancy in a fluorocarbon fluid with
that of a sphere of accurately measured radius. Both
measurements are thus referred to the common scale of
optical wavelength.

The use of silicon as a secondary mass standard is,
however, complicated by the fact that it contains three
stable isotopes whose relative proportions would need to
be measured to a precision comparable with that desired
for mass. One could, alternatively, use crystals composed
of elements containing only one stable isotope, for exam-
ple, *Be, Na,'°F, 7Al, *Mn, **Nb, '®Rh, or '"'Au.
Their lattice spacings could be related to that of silicon
by comparing diffraction angles for selected low-energy
gamma rays which (unlike characteristic x rays) are
sharp and of known symmetric line shape.

Crystal defects of various types [13] must, of course, be
carefully minimized and/or monitored. Surface effects
(e.g., from contaminant layers) can be reduced by using a
sufficiently large crystal. Edge and screw dislocations are
expected to create a long-range shear strain, rather than
a dilatation; there is, however, a residual “anharmonic”
dilatation [14] (not calculable from classical elasticity) of
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about one atomic volume per lattice spacing along the
dislocation line, so that to keep the net dilatation below
0.01 ppm the single crystal should not have more than
about 107 dislocations/cm?. Residual chemical impuri-
ties can be allowed for in the mass calculation if one mea-
sures their concentrations and knows their locations (sub-
stitutional versus interstitial). Frenkel vacancy-intersti-
tial pairs should not cause a significant change in macro-
scopic crystal density; Schottky vacancies, arising from
the migration of atoms from lattice sites to the crystal
surface, will do so, but their equilibrium concentration is
temperature dependent and their effects can be corrected
for by measuring the ratio of crystal size to lattice spac-
ing as a function of temperature and extrapolating to ab-
solute zero. Finally, a given crystal may contain unex-
pected defects, such as voids, arising from irregularities in
its growth; the best check for these is probably the com-
parison by weighing of the calculated masses of crystals
prepared in different ways and, preferably, made of
different chemical elements.

One can, alternatively, adopt a method [15] in which
the mass of a macroscopic object is related to the mass of
the electron—and hence, by the 0.02-ppm Penning trap
[16] measurement of the proton-electron mass ratio, to
the masses of its atoms— by the comparison of mechani-
cal and electrical work, with the electrical units being
defined in terms of fundamental constants via the Joseph-
son and quantized Hall effects.

The construction of acceptable secondary standards
will require a considerable effort in metrology and, if the
single-crystal method is used, in the characterization of
solid-state defects; the problems of their preservation,
once the numbers of atoms in them are determined, are
similar to those [3] surrounding the prototype kilogram
but, it should be emphasized, refer only to secondary
standards—the primary definition of mass requires no
man-made standard and is permanent, indestructible, and
universally accessible.

Several people [2] have proposed a redefinition of the
kilogram as the mass of a defined number of specified ele-
mentary particles or microscopic systems (e.g., electrons
or 2Si atoms); our definition of mass as de Broglie fre-
quency goes further in that, if the present theory is
correct, there is no need even to specify a particular mi-
croscopic entity as an atomic mass standard. Moreover,
its adoption would in principle eliminate all base units ex-
cept the fundamentally irreducible units of time and
length.

If we use m (or the inverse Compton wavelength m/c)
instead of m in the equations of physics, all coupling con-
stants become dimensionless or have the dimensions of
length or time; in particular, there is no need [5] to define
a standard of electric charge with its own dimension Q.
For example, the classical nonrelativistic equation of
motion of particle 1 (position x,, charge Z,e, mass 71,)
under the electrostatic and gravitational forces exerted on

it by particle 2 (position x,, charge Z,e, mass ), ex-
pressed in terms of SI quantities,

— d2X| Z|Zz£72 - X1 —X2
my— = +Gmymy (~———5,
di 4rego Ixi —xa|
where G is Newton’s gravitational constant, becomes
2
m, d X m, mp X)) —X2
— > = Z\Zryatyp—— 30
¢ dlct) ¢ ¢ ]lxi—x

where a=&%/4neghc = 1/137.036 is a dimensionless mea-
sure of the strength of electromagnetic coupling and
yp=(Gh/c?)'?=1.616x1073 m is the Planck length.
From the present viewpoint, it is a, rather than e, which
is measured in electromagnetic processes and yp, rather
than G, in gravitational experiments; one can define a
“charge quantum” e=vara [=¢&/(ghc)', but this is
dimensionless and does not require the definition of some
arbitrary unit of charge, except of course as a convenient
secondary standard for use when masses are expressed in
terms of the kilogram.

The use of absolute mass and coupling constants such
as a and yp, instead of SI mass and charge, also elimi-
nates Planck’s constant A from all the equations of quan-
tum physics—not by choosing new units of mass, length,
and time such that A =1, but by keeping the SI units of
time and length and recognizing that A is simply a con-
version factor connecting absolute mass with SI mass
and, from the present viewpoint, is just a property of the
standard kilogram. If and when the realization of abso-
lute mass is considerably improved beyond its presently
achievable ~ 1-ppm precision, the prototype kilogram it-
self would become a secondary standard which could be
calibrated in terms of absolute mass [on the basis of the
current best value [17]1 of A, 1| kg corresponds to
8.5224585(51)x10°°s ']

Finally, we remark that these considerations give rise
to some intriguing questions. What physical interpreta-
tion is to be given to the de Broglie frequency we have
taken as our fundamental definition of mass? And, if the
use of this definition leads to the disappearance of A from
quantum equations, what is the role of the quantization
procedure, whose *‘scale” is given by 2? Such questions
lie beyond the scope of the present Letter, but we refer to
one possible approach [5,18] to them in terms of a picture
of particles as extended objects, to be discussed further in
a separate paper [19].
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