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We present a rnultigrid Monte Carlo algorithm with piecewise-linear interpolation operator for non-

.linear a models with global chiral SU(1V) xSU(1V) symmetry or CP ' manifold. We demonstrate its

eSciency in the two-dimensional SU(3) &SU(3) chiral model and the CP nonlinear o model for corre-
lation length up to 77 in lattice units. On lattices up to size 512X512 we achieve almost complete elim-

ination of critical slowing down in the Cp case, with a dynamical critical exponent zMG«0. 2+ 0.1.
Asymptotic scaling with the bare coupling does not appear to set in for the standard action of both mod-

els in the range of parameters studied.

PACS numbers: I I. I S.Ha, 02.70.+d, 05.50.+q, I I.IO. Lm

1. Introduction. —The development of nonlocal Monte
Carlo algorithms which avoid critical slowing down has

opened a new field of interest in computational physics.
On the one hand, cluster algorithms for discrete [1] and

continuous [2] spin models have proven to be extremely
effective in reducing critical slowing down. However, it is

not clear whether these methods can be extended effec-
tively to continuous-spin models other than ¹ector
models, e.g. , to general o models or lattice gauge theories
[3]. On the other hand, a second promising approach to
overcoming critical slowing down is the implementation
of multigrid ideas for Monte Carlo simulations [4-6].

Two-dimensional nonlinear o models with a non-

Abelian global symmetry group are asymptotically free
and share many properties with four-dimensional gauge
theories [7]. Besides the O(1V)-invariant vector models,
the principal chiral models with global SU(N)XSU(N)
invariance and the CP ' models have been studied on
the lattice for the last decade.

In this Letter we present a rnultigrid Monte Carlo al-
gorithm for general nonlinear a models and apply it to
some two-dimensional tr models. A first test of this mul-

tigrid algorithm for the asymptotically free two-dimen-
sional O(3) nonlinear tr model was very promising: The
dynamical critical exponent z was reduced to zMGMc
=0.2+ 0.1 [8]. Here we apply this algorithm to the
two-dimensional SU(3) XSU(3) chiral model and to the
CP model, for which cluster algorithms are believed [3]
to be ineffective.

2. SU(N) X SU(N) and CP ' a models. —A class of
nonlinear o models of great interest are the principal
chiral models with global SU(1V) &SU(N) invariance.
For the color group SU(3) they share the type of vari-

ables with QCD and in four dimensions they turn out to
be an effective field theory of light mesons. Within the
Migdal recursion relation the 2D models have the same
renormalization-group trajectories as pure SU(N) lattice
gauge theories in four dimensions [9]. The existence of
non-Abelian vortices is an interesting nonperturbative as-
pect of these models.

The chiral SU(N)XSU(N) models are defined on a
two-dimensional square lattice L x L with periodic bound-

S=2pZ (1 lzI" zeal )
&i,j )

(2)

where z; is a ¹omponent complex unit vector and P is

the coupling constant. The CP ' models are in a disor-
dered phase for all finite values of N—the CP' model is

equivalent to the O(3) nonlinear tr model —and for all in-

verse temperatures P. The correlation length is obtained
from the exponential decay of the invariant connected
two-point function G(i,j ) (lz;zeal ) 1/N, while —the
magnetic susceptibility g is given by g=(l/L ) P; ~G(i,
j).

The critical behavior for P ~ of all nonlinear o
models is governed by the perturbative renormalization

group, which implies asymptotic freedom, and the corre-
lation-length should scale with the first two universal
coefficients [11]of the renormalization-group P function.

3. Mulrigrid algorithm. —Updates on the various lev-

els of a multigrid system can be vie~ed as nonlocal up-
dates on the corresponding fundamental system. This
unigrid point of view needs less formalism to describe the
algorithm, and furthermore it is more general in the sense
that not all nonlocal changes of the fundamental field

configuration can be interpreted as single site changes on

a multigrid system.
We use a Metropolis algorithm to update the system.

But the proposals for a new field configuration are in gen-

ary conditions by the action

S= —
2 p g (trU;Ujt+H. c.), (1)

(ij &

where U; is a SU(N) matrix in the fundamental represen-
tation, the sum runs over all nearest-neighbor pairs, and P
is the coupling constant. The theory is in a disordered
phase for all P and finite 1V~ 2 with susceptibility g
defined by g = (1/L ) P; 1 Retr(U;Ujt)

e models which have a topological structure are very
similar to SU(N) gauge theories in four dimensions [10].
The CP ' manifold is a (2N —1)-dimensional sphere,
where points related by a U(1) transformation are iden-

tified. A simple choice of the lattice action for the
CP ' model, which preserves this local U(l) gauge in-

variance, is given by
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eral nonlocal. They are given by

U,' =exp( i—qrA~X I )Uj (3)

for the chiral SU(N) X SU(N) symmetric models, where

Al is a generator of the SU(N) group and

z,'=exp( iq—A, X()z, (4)

for the CP ' model, where A, l is a generator of the
U(N) group. + is a random number with an even proba-
bility distribution.

The kernels Aj determine the relative amplitude of the
change of the fields at the sites j. The Aj are chosen such
that they are only nonzero within Lg XLg blocks and the
average over the block is normalized to 1. In the spin-
wave approximation one can exactly calculate the mean

step size (qr) of the heat bath version of this algorithm
[12]. In two dimensions for at least piecewise linear ker-
nels the mean step size (9') is constant for increasing
block sizes L8, while it decreases like I/Llii for kernel

A~ =const within a block. In our numerical work we used

kernels with a pyramidal shape.
These elementary updates build whole cycles. First we

sweep through the fundamental lattice with a local
Metropolis update, next over all disjoint blocks Lg
=2,4, . . . and so on up to the maximum block size

L&,„=L/2, and then start the new cycle again with a lo-

cal Metropolis sweep. The computational effort for such
a V cycle grows roughly like L"lnL [61.

In order to reduce the computational effort of the algo-
rithm we use the same generator Xl, which is randomly
selected, for all updates within one cycle. The updates
with this single generator can be interpreted as updates of
an embedded two-dimensional XY model with the action

5= —
—, Pg [trexp[ —i(P; —

p )Xl]U;U +H.c.l (5)
(i,j &

for the chiral SU(N) & SU(N) models and

S =2P g [I —~exp( —ip;Al )z;exp( ir/p~) I )z~ ~ j (6—)
(i,j )

for the CP ' models, where we set the real variables

p; =0 at the beginning of each cycle. After one cycle the
original fields are changed according to

the performance of this multigrid Monte Carlo algorithm
with piecewise linear kernels for the 2D chiral SU(3)
x SU(3) and the CP nonlinear o models.

The autocorrelation time z is used to measure the
speed with which statistically independent configurations
are generated. Its dependence on the correlation length (
is parametrized by the dynamical critical exponent
r a:(=.

We calculated integrated autocorrelation times
from the normalized autocorrelation function p(r) with a
self-consistent truncation window of width 4r;„t [13) for
the energy E and the magnetic susceptibility g.

For both models we find r;„& & zz, and an exponential
falloA' with a single decay constant in all our runs. We
determine the correlation length g by fitting the invariant
zero-momentum correlation functions to

G(x) ec exp ——+expX L —x (9)

7 . 7

in the interval g-3g and checked the stability and

significance of these fits by comparing with further fits in

the intervals 2 g- 2 g, (-2g, up to as large a distance as a

fit can be obtained. The error is estimated by a jack knife

analysis. In Fig. 1 the zero-momentum correlation func-
tion of the CP model on a L =512 lattice and a coupling
P=3.3 is plotted together with the fit Eq. (9) with

(=77.7. For distances x smaller than g contributions of
states of higher energy are not negligible, but for larger
distances the fit is quite satisfying. The results for the
chiral SU(3) X SU(3) and the CP model of these fits are
gathered in Table I.

Using these measurements of g and the autocorrelation
times z;„I we estimate the dynamical critical exponents of
the conventional Metropolis updating and our multigrid

algorithm. In Fig. 2 a log-log plot of z;„& versus the
correlation length g for both Metropolis and multigrid

updating of the CP model is shown. We have two sub-

sets of data with L/( = 7 (five data points) and L/( = 14

U =exp( ip;71)U;—
in the case of the chiral SU(N) x SU(N) models and

(7)

z =exp( —iP;Al)z;.
in the case of the CP ' models. Test runs on small lat-
tices showed that the block updates need overlap. We
satisfied this demand by translating the fields after each
cycle by a randomly chosen distance.

In order to reduce the dependence of the Markov chain
on the special properties of our Metropolis implementa-
tion, we use a 10-hit Metropolis update for the simula-
tions discussed in the following.

4. Numerical results. —%'e did numerical studies of
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FIG. l. The zero-momentum correlation function of the CP
model on a L =512 lattice and a coupling P =3.3 is plotted to-

gether with the fit Eq. (9) with correlation length g =77.7.
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28k
28k
28k
40k
28k
40k

2.28(4)
3.O7(7)
3.05(8)
s.4i (8)
8.54(16)
8.27(11)
i 3.2(2)
12.8 (2)
17.4(2)
2S.3(3)
36.6(5)

2.64(5)
4.4(i)
6.s(2)

4.49(6)
4.s4(4)
6.49(4)
8.82(13)
8.76(12)
18.5(6)
18.4(4)
38.2(6)
37. i (6)
77.7(1.4)

34. 1 (3)
s7.s(s)
s7.s(7)
145(2)
307(5)
297(4)
629(10)
619(14)
1031(18)
1915(36)
3868(90)

11.2(1)
25.9(6)
45.9(5)

26.2(3)
26.6(3)
45.8(3)
79.6(1.1)
79.2(i.3)
273(3)
276(3)
933(12)
922(11)
3034(50)

42(3)
4o(s)
i6(2)
26(4)
6s(9)
3i(4)
6s(8)
4s(8)
4o(s)
s6(8)
72(i3)

so(3)
172(24)
340(24)

28(2)
22(2)
2i(i)
26(3)
3o(4)
38(4)
3i(3)
4i(4)
37(3)
48(6)

TABLE I. From top to bottom: data from Monte Carlo runs

of the chiral SU(3) xSU(3) model with multigrid updating fol-
lowed by CP model data from local Metropolis and multigrid
updating, with lattice size L, coupling P, statistics (stat), corre-
lation length (, susceptibility z, and integrated autocorrelation
times rig) of g.

stat

=0.20(4) (upper line) and zMGMc =0.23(6) (lower line)
with a g /Nop of order 1. For the chiral SU(3) xSU(3)
model we do not have enough data yet to do this finite-

size scaling analysis [14].
We can now use our simulation data to look for asymp-

totic scaling with the bare coupling constant. The defect
b of the mass gap m = I/g is obtained by dividing the in-

verse correlation length by the universal two-loop result,
and the renormalization group predicts that b should go
to a constant as p ~. But Figs. 3(a) and 3(b) show

that this behavior does not describe our data for both
models. In the chiral SU(3) x SU(3) model our last two

data points may indicate an approach to a constant. We
are presently performing simulations on L =512 lattices
to check for finite-size effects at these two couplings [14].

But the mass-gap defect data in the CP model, shown

in Fig. 3(b), indicate substantial scaling violations. This
effect seems even more pronounced than in the 0(3) non-

linear o model [15,16].
Our results are consistent with previous numerical

studies of the chiral SU(3)xSU(3) model [17-20] and

the CP model [21-23]. But we would like to mention

SU(3j x SU(3)

70

(four data points), respectively. Within these data sub-

sets the unknown scaling function g((/L) of the dynamic
scaling ansatz r;„, g(g/L)g(p, L)' varies very little. A
fit to these subsets following r;„tcx:g' gives for zMoMc 5 0 I I I I I I I I I I I I I I I I I I I I I I I ~ I I I I I I I ~ I I I I I I I I I I I I
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FIG. 2. Log-log plot of autocorrelation time r;„& vs the corre-
lation length g for Metropolis and multigrid updating of the
CP' model. The straight lines are fits with dynamical critical
exponents zM t 2.15~0.10 and zMoMC=0. 20~0.04 (upper
line) and zMoMc 0.23+'0.06 (lower line).

FIG. 3. (a) The mass-gap defect b =m(4'/3) '~ e r~ vs

the coupling P for the chiral SU(3) xSU(3) model. (b) The
mass-gap defect b, =m(nP) '~ e ~ vs the coupling P for the
CP model.
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that only Ref. [20] uses an accelerated algorithm and
that the largest correlation length in the chir al
SU(3)XSU(3) model is (=10 and in the CP model is
(=38, but typically with an error of 25/0. Further de-
tails of our simulation including measurements of the to-
pological susceptibility will be published elsewhere [14].

We have demonstrated that the multigrid Monte Carlo
algorithm with piecewise linear interpolation almost com-
pletely eliminates critical slowing down for nonlinear o.

models with a general global symmetry group. The sub-
stantial improvement in eSciency allows us to study the
chiral SU(3)XSU(3) and the CP much closer to criti-
cality than previous studies.
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