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The loop-space representation based on Ashtekar's new variables has allowed for the first time the
construction of quantum states of the gravitational field. However, all states known up to the present
were associated with spacetime metrics that were everywhere degenerate. In this Letter we present a
new exact solution of the constraint equations of quantum gravity that is the first quantum state of the
gravitational field known to be associated with a not-everywhere-degenerate metric. The state is associ-
ated with the second coefficient of the Alexander-Conway polynomial of knot theory.

PACS numbers: 04.60.+n, 04.20.Jb

It is nowadays widely accepted that the road to a quan-
tum theory of the gravitational field must be nonpertur-
bative. Among the several nonperturbative proposals to
quantize the gravitational field, the Dirac canonical
quantization of Einstein's general relativity has received a
great deal of attention since the introduction of a new set
of canonical variables by Ashtekar [I] gave a tractable
structure to the quantum constraint equations. In the
Dirac procedure, after choosing a suitable set of classical
canonical variables and a quantum polarization to repre-
sent the Poisson bracket algebra of the variables, the next

step is to construct the set of physical states which are in-

variant under the symmetries of the theory considered.
Only after the construction of this set is accomplished, by
searching for those states annihilated by the constraint
equations, is an inner product imposed on the physical
states and physical predictions made. Up to now, our un-

derstanding of quantum gravity has only allowed us to
know a small degenerate sector of the set of physical
states [2-4]. The intention of this Letter is to present the
first of a possible series of not-everywhere-degenerate
quantum states of the gravitational field.

The new variables introduced by Ashtekar [1] consist
of a densitized triad F. and a (complex) SU(2) connec-
tion 3,' as conjugate momenta. These variables naturally
imbed the phase space of general relativity in that of a
Yang-Mills SU(2) theory. In particular, they allow us to
understand the dynamics of general relativity in terms of
a connection rather than a metric. This in turn brought
to the forefront the role of Wilson loops in quantum grav-
ity. Jacobson and Smolin [2] showed that in the connec-
tion representation of quantum gravity based on Ash-
tekar's new variables the trace of the holonomy of the
Ashtekar connection along a smooth loop was a solution
of the Hamiltonian constraint of quantum gravity
(Wheeler-De Witt equation). Rovelli and Smolin [5]
later introduced a whole new representation of quantum
gravity where wave functions depend on loops: the loop
space representation. Such a representation is known to
exist for several other gauge theories, such as Maxwell's

electromagnetism [6,7], Yang-Mills theories in the con-
tinuum [Sl and lattice [9-11], Chem-Simons theories
[12], linearized gravity [13],general relativity in 2+ I di-
mensions [14], and topological field theories [15]. The
solutions found by Jacobson and Smolin in the connection
representation found a natural counterpart in the loop
space representation of quantum gravity —with the ad-
vantage that in this case they satisfied all the constraint
equations —by considering wave functions that had sup-
port on diffeomorphism-invariant classes of loops (link
classes).

It was noticed, however, that if one considered the
quantum metric operator acting on these wave functions,
the result was a degenerate metric. Not only did it have

support distributionally along the loop, but its deter-
minant was identically zero everywhere. It was hoped
that a cure to this problem could come through the con-
sideration of intersecting loops, since the degeneracy of
the metric operator was lower at the points where there
existed multiply defined tangents to the loop. However,
analysis of two [2], three [3], and finally N [4] intersect-
ing loop solutions in the connection representation showed
that for an arbitrary finite number of intersecting loops
the metric continued to be degenerate. The importance
of the issue of the degeneracy of the metric appears more
clearly when one considers general relativity with a
cosmological constant. The only change in the Hamil-
tonian theory that a cosmological constant introduces is
that a term proportional to the square root of the deter-
minant of the metric is added to the Hamiltonian of the
vacuum theory. It is therefore evident that if a quantum
state is annihilated by the determinant of the metric and
the Hamiltonian of the vacuum theory, it is also a quan-
tum state for an arbitrary value of the cosmological con-
stant. Since we know that general relativity, at least clas-
sically, has a completely different behavior depending on
the value of the cosmological constant, it is quite clear
that quantum states should also differ for different values
of the cosmological constant. This shows that the states
found up to the present are just a small and degenerate
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sector of the full space of states of the theory.
The intention of this Letter is to present the first solu-

tion to the constraint equations of quantum general rela-
tivity which is nondegenerate in the sense indicated above
(at least in one point of the manifold). The main novelty
consists in working directly in the loop representation,
thus avoiding the no-go result of Ref. [4] that shows that
all known solutions in the connection representation are
degenerate. In order to do this we will rely on a series of
techniques that allow us to write the constraints of quan-
tum gravity and the wave functions directly in the loop
representation.

The wave function we present here can be written as

+[y] =p) (y) +pp(y),

p)(y) =h.,b, ,-X'-'"-" (y), (2)

where g, „,- =e«b(x —z ) /~x = z~ is the propagator of a
Chem-Simons theory, hax b&'e: fd' gaxdw gby ew ge= fw
&&@ 'I, and y is a loop. We have introduced a "general-
ized Einstein convention" for the spatial indices meaning

g,„.. .
X'"''' =fd xg, „.. . X"'''. The X's are "coordi-

nates" on loop space defined by

t I pl'"'"(y) =&t ds~ ft ds„y" (s~) y'"(s„)b' (x~ —y(s~)) 8 (x —y(s„))8(s~, . . . , s„),
w here y'(s) is the tangent to the loop y at the point s and

8(s~, . . . ,s„)=1 if s~ ( . (s„and zero otherwise.
These "coordinates" on loop space were introduced by
Gambini and Leal [16] but appear implicitly in the ear-
lier work of Makeenko and Migdal [17]. The expression
for %'[y] has appeared in the literature in connection with

the perturbative treatment of Chem-Simons theories
[18]. In this context it was recognized as a knot invariant
closely related to the second coefficient of the Alexander-
Conway knot polynomial [az ~p (p/+pz+ 2 ) in an R
topology] and also with the Arf and Casson knot invari-
ants [18]. The reader may feel uneasy with the fact that
expressions that involve a background metric and particu-
lar choices of coordinates can be knot invariants. We will

offer explicit proof that the wave functions are annihilat-
ed by the diffeomorphism constraint. Intuitive feeling
can be gained by considering the knot as carrying electric
currents and analyzing the meaning of the expressions
from an electromagnetic point of view. These kinds of
reasonings were known to Maxwell himself [19], and

gave the initial impetus to knot theory.
The main result of this paper is to note that the wave

function %'[y], when evaluated on knots with at most a
triple self-intersection (the case of more complicated in-

tersections will be discussed in [20]), is annihilated by the
Hamiltonian constraint of quantum gravity and is not an-
nihilated by the determinant of the metric (at the point of
self-intersection). Starting from this solution we can con-
struct a proper wave function on the complete loop space
by the following prescription: (a) Let it be equal to %'[y]
for single loops with self-intersections of order less than
or equal to three. (b) Using the SU(2) spinor identity
(see below) the value of the wave function can be speci-
fied on multiloops of up to three intersecting loops. (c)
For higher multiloops or for loops with self-intersections
of order higher than three, the wave function is defined to
be zero (this does not imply the appearance of any "dis-
tributional" terms when evaluating the constraints since
they do not connect the case of four or higher order with
the lower ones).

This wave function is the first not-everywhere-degen-

crate solution to all the constraints of quantum gravity
that is known. It can also be checked explicitly that it is

annihilated by the diffeomorphism constraint, confirming
its knot-invariant nature. This solution could not be seen
in the previous attempts to construct N intersecting loop
solutions in the connection representation [4], since being
diffeomorphism invariant it would require an infinite su-

perposition of holonomies in the connection representa-
tion to express it.

We now show that our wave function satisfies the con-
ditions required to become a nondegenerate quantum
state of the gravitational field. First of all, in the loop
space representation, any wave function must satisfy
~[y~ ', yz] =~[y~, yz], where y~

' is a loop component of
the multiloop with the opposite orientation; also 4'[y~, yz]
=9'[y~yz]++[y~yi ] [SU(2) spinor identity], which
states that the wave function for a multiloop composed of
an arbitrary number of loops can be determined by its
value on a single loop. All these conditions are met by
the wave function presented, by construction. Second, to
become states of the gravitational field, wave functions
have to be annihilated by the diffeomorphism and Hamil-
tonian constraints. These constraints take on the follow-

ing form when written in the loop representation [21,22]:

C(v)+[y] =
J ds v'(y(s)) y (s)dab(s)%'lyl,

fO

H(N)%'[y] = ds dt N (y(s) )fe(y(s), y(t) )
X y (S)y'(t)a.'b"~[y.,', y ], (6)

where 6 b is the area derivative, and f, is a regulator
such that the constraint is retrieved in the limit e 0
where fe(y, z) 8 (y, z). y.,' denotes the portion of the
loop going from s to t. The symbol h,,b acting on a wave
function depending on a multiloop denotes an area
derivative with respect to the first loop in the multiloop
(separated by commas in our notation). We have in-

tegrated the Hamiltonian and diffeomorphism constraints
with a scalar lapse N and a shift vector v'. The expres-
sion for the Hamiltonian is only valid for single loops y",
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additional terms are present (see Ref. [22] for details)
when one considers its action on multiloops.

The area derivative [23] is the natural differential
operator that arises in loop space when one considers two
loops to be topologically "close" if they differ by
an infinitesimal element of area. The definition of the
area derivative is 9'[y by] =(I+a' h,b)W[y], where
a' =gds by '(s)8y (s) is the element of area associated
with the infinitesimal loop hy (y by stands for the com-

position of loops y and 8y). We note that the introduc-
tion of this derivative in no way needs the introduction of
a metric or other structure that can conAict with dif-
feomorphism invariance [22].

To calculate the action of the constraints on e[y] we

need the formulas for the area derivative of an X. Notice
that the L in the invariant in question are always con-
tracted with cyclic objects; therefore we only need their
cyclic part, which we denote with a subscript c. One ob-
tains

h,b(s)X," ' '" "(y) =[X" ' '" '"' '(y,')28~,"Shab(x„—x)
-X""' '"-'""-'(y.,')2a.'"-'a;"'b(x. , -x)b(x„—x)]„

where y,
'

y,'yo and x =x(s) (see, for instance, [24]). Note that this expression for the area derivative consists of two
terms, one containing an X of one order less than the one of which the derivative is being taken, and one of two orders
less. In what follows one also needs to take into account the following differential identities satisfied by the X's:

(x )Xalx I
' ' a x ' ' ' aex P( x )Xalx I di» ' ' ' aexrt b(x x )Xalx I

' 4'x'; . a„x„
a;&i c l t l C l + I l C

where x„+I =xl and xo=x„. The notation 8,, (x;) means a partial derivative evaluated at x; and our "generalized Ein-
stein convention" does not apply to the x s inside the b functions.

We will now indicate how one can explicitly show that the proposed wave function satisfies the diffeomorphism con-
straint. This is of interest in itself from the point of view of knot theory since it constitutes the first explicit proof that
the expression is actually a knot invariant. (For reasons of space we cannot show the full calculation, which will appear
in [20], but it can be completed straightforwardly with steps similar to the ones shown. )

Let us evaluate the action of the diffeomorphism constraint on pl for a single loop y:

CII. )pl (y) = ds I."(p)y'(s)h, „b~„,[X'" (y)2bld8, lB(p —z) X"(y)2lI—~~B,'l8(p —y) B(p —z)]

ax ldpeplX (y)]

t
at the intersection. Such a loop with a triple self-

intersection constitutes the generic case since there can be
no more than three linearly independent tangent vectors
at a point. Again we cannot give the complete calcula-
tion for reasons of space. There are three types of terms
that arise, which are of order three, four, and five (here
order is the number of tangent vectors) The te. rms of or-
der three stem from the application of the constraint to p~

and cancel among themselves. The terms of order four
come from both pl and p2 and cancel when combined.
We now show explicitly the cancellation of the terms of
order five. Evaluating the Hamiltonian constraint for the
loop y one obtains up to a factor Z depending on the re-

l

gulator f,:

ds v (p) y (s) [28ldh, pl AX'" (y) 2ll

where p=y(s) and we have integrated by parts. Expand-

ing the derivative on the II,„,„b~ and integrating by parts
we get several terms. Some of them cancel using the
differential identities for the X's and others combine with

terms coming from the action of the constraint on p2 to
give a vanishing result. The application of the constraint
to p2 goes along the same lines as the calculation exhibit-
ed.

We now sketch the calculation for the Hamiltonian
constraint. The Hamiltonian constraint is only nonvan-

ishing when applied to intersecting loops. Here we com-
pute the action of the Hamiltonian constraint evaluated
for a single loop y-yl y2y3 which intersects itself only at
the point x;„t where the y s are combined. We assume
the y s not to have kinks, but y is allowed to have kinks

H(+)+[yl y2 y3] =Z&(x .I) [y3 yl &.h(l )-+[y3 y2 yl] +c7c ] (lo)

where y; is the tangent at the intersection which is at the end of the path from y;(0) to y;(I ), the area derivative acts at
the end of the loop argument, and cyc. means cyclic permutations of the y s. The fifth-order terms, which all arise from

p2, are

[H(N)+[y]]5 h d ZN(xl ) y3 yl 2~[or)bj~(xi I x4)X (y3 y2 yl )g...,...3g. ~ +cyc.

= —2ZN(xlaI) yl y2y3eab, g„x, ,x,[X""'(y3)X""(y2)—X""'(y3)X" '(yI)]+cyc. ,

where we have integrated by parts to obtain the last equality. We notice that when a11 the cyclic terms are added the re-
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suit is zero. (Actually the zero result is obtained in the limit where the regulator is removed. The factor Z is divergent
in this limit and therefore one could consider a "renormalized Hamiltonian constraint multiplying it by e. This kind of
situation appears for all other known solutions [2-5,21].)

The expression for the square root of the determinant of the three-metric in loop space can be computed following the
same procedure outlined in Ref. [21] to calculate the action of the Hamiltonian constraint. The final result is

(detq)' (x)e[y~y2y3] = ——', Z8 (x —x;„&)yfyzy3e, b, (%'[y~ 'y2y3]+cyc. ), (12)

and for the wave function +[y] under consideration this
expression is nonvanishing. This concludes the proof that
%'[y] has properties as claimed.

Since the solution has a self-intersection at an isolated
point, and it is at this point where the three-metric is non-

degenerate, one could consider constructing a "weave" of
loops with triple intersections at several points on the
manifold. This could be a naive candidate for a "semi-
classical" quantum state, which would have a three-
metric nondegenerate in a set of discrete points and the
net effect would be a nondegenerate metric averaged over
large scales. The use of such wave functions has already
been considered, in the context of a self-consistent pertur-
bative scheme for the loop space representation by Ashte-
kar, Rovelli, and Smolin [25].

The generation of higher-order knot invariants and de-
tails of how these expressions are consistently framed will

be discussed in a forthcoming publication [20].
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