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Direct Test for Determinism in a Time Series
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A direct test for deterministic dynamics can be established by measurement of average directional
vectors in a coarse-grained d-dimensional embedding of a time series. Theoretical analysis of the statis-
tical properties of a random time series using the same embedding technique is possible by consideration
of classical results concerning random walks in d dimensions. Examples are given to show the clear
differences between deterministic dynamics, such as may be generated by chaotic systems, and stochastic

dynamics.

PACS numbers: 05.45.+b, 05.40.+j, 87.10.+¢

Complex time series are ubiquitous in nature and in
man-made systems, and a variety of measures have been
proposed to characterize them. For example, power spec-
tra [1] are particularly suitable for analysis of linear sys-
tems, where their interpretation is often transparent,
whereas the dimension [2,3] and Lyapunov number [4]
have been used to study geometrical and temporal prop-
erties of chaotic dynamics. However, none of these mea-
sures can be readily applied directly to determine if the
dynamics are generated by a deterministic, rather than a
stochastic, process. Here we propose a novel method to
characterize a time series that is directed towards the
analysis of whether the time series is generated by a
deterministic system. The method is based on the obser-
vation that the tangent to the trajectory generated by a
deterministic system [5] is a function of position in phase
space, and therefore all the tangents to the trajectory in a
given region of phase space will have similar orientations.

The method is illustrated in Fig. 1(a). The left-hand
panel shows the x component of the deterministic chaotic
Lorenz attractor [6] embedded in a two-dimensional
phase space with the abscissa given by x(¢) and the ordi-
nate by x(t —t). This phase plane is coarse grained into
a 16x 16 grid, and each pass k of the trajectory through a
box j of phase space generates a vector of unit length,
called the trajectory vector vi j, whose direction is deter-
mined by the vector between the point where the trajecto-
ry enters the box and the point where it leaves the box,
that is, the average direction of that pass of the trajectory
in the box. The resultant vector from the vector addition
of all the passes through each box, normalized by the
number of passes n; through the box, is V; =2 vk ;/n;.
This gives a coarse caricature of the dynamics. In regions
of the phase space where the vectors are well aligned in
the 2D embedding, the resultant vector is almost of unit
length. In the regions of phase space where trajectories
cross, the length of the resultant vector is reduced. Now
consider the results of performing the same procedure in
a 3D phase space with coordinates of x(¢), x(¢t—1),
x(t—21). The phase space is coarse grained into a
16x16x16 grid, and the resultant vector average V; is
determined and plotted as a projection onto the x(z)-
x (¢t —t) plane. Now the crossings of the trajectories are

resolved and the geometry of the flow on the attractor is
well approximated. In contrast, in Fig. 1(b), we consider
embedding a synthesized random signal [7] that has an
autorcorrelation function ¥(7) identical to that of the
Lorenz attractor. Now there is a spaghetti mess that is
not resolved in the 2D or 3D embeddings.

A statistical characterization of the dynamics can be
generated by first determining the resultant vector V; in
each box j in phase space. The average value of this sum
for a d-dimensional embedding of the dynamics is denot-
ed [j,‘f=(|Vj|),,j =, where the angular brackets denote an
average over all boxes containing n passes of the trajecto-
ry. Figure 2 shows LY for the data displayed in Fig. 1.
The strong correlations between the directions of the vec-
tors in each box for the Lorenz attractor are reflected in
the high values of LY that are close to the maximal value
of 1, for the 3D embedding. In contrast, for the random-
ized signal, L decreases approximately as n ~'/2.

In general, we wish to embed the signal in d dimen-
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FIG. 1. An embedding plot x(r—z) vs x(z) and coarse-
grained flow averages for the x component of Lorenz equations
and for a random signal with the identical power spectrum.
Embedding lag 7 =0.75. The length of the arrows shows the
alignment of the trajectory vectors in the corresponding box,
and the direction shows the direction of mean flow. Scales: (a)
[—20,20] and (b) [—30,30]. The signals shown in the trajec-
tory plots cover 50 time units; the other plots cover 655 time
units.
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FIG. 2. LY vs nfor d =2,3 for cases shown in Fig. 1 for a sig-
nal length of 655 time units and gridding of 16¢. Error bars
show the standard error in the estimate of the mean. The lines
show the theoretical values computed from Eq. (1) for random
flights in 2D and 3D. The open squares represent a 3D embed-
ding with grid 323, 7 =0.75.

sions and to develop statistical criteria to distinguish
deterministic dynamics from dynamics that involve sto-
chastic processes. To carry out the statistical analysis, we
consider random walks in d dimensions [8-11]. A ran-
dom walk consists of n steps of unit length in d dimen-
sions where the angle from each step to the next is chosen

randomly. In this Letter we consider the average dis-
placement per step, R,‘f, which, for large n, is [11]
1/2
" | nd r/r) -

where T is the gamma function. Thus, RY=cyn ~'?,
where ¢, equals ©'%/2, 4/(67)'2, 3x'2/32'? for d
=2,3,4, respectively, and limy . cy =1. Although Eq.
(1) is valid only for the asymptotic limit when n is large,
it agrees with the analytical values for n=2 to within
about 3% [12]. In Fig. 2, the solid curves show the
theoretical values of Eq. (1) for d =2 (lower curve) and
d =3 (upper curve), in close agreement with the random-
ized time series.

To analyze a time series it is necessary to set three pa-
rameters: the time lag 7 of the embedding, the number
of dimensions d of the embedding, and the edge length ¢
of a box. For a system with an m-dimensional attractor,
a necessary condition to embed the attractor is d = m, al-
though hints of deterministic structure may be seen at
smaller d. As ¢ decreases, longer data sets must be used
in order to generate multiple passes through individual
boxes of phase space. For high-dimensional attractors,
the necessity of long data sets and the memory size of
computers provide practical limitations on the utility of
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the method.

Choosing the value of the time lag in the embedding is
a subtle issue that has been considered in the related
question of the determination of the dimension of attrac-
tors. In this earlier work, suggestions for the time lag in-
clude a fraction of the first zero of the autocorrelation
function [13] and the minimum of the mutual informa-
tion function [14]. In the present case, there is an inter-
play between the autocorrelation function ¥(7°) and the
mean direction in each box. For Gaussian random pro-
cesses [7] the structure of the coarse-grained embedded
vector field can be approximated in terms of ¥(7). We
consider the covariance matrix [15] of the 2d-dimensional
vector

E=Ix@),xt—1),... xGt—Wd—1)1),
Ax(t),AxG—1),...,Axt—d—1)1)],

where Ax (1) =x(t+5b) —x(z) and b > 0 is the time scale
for passage through a box. The first d components of &
describe position in the phase space; the second d com-
ponents describe the direction of trajectories through that
position. The covariance matrix is written (£7&), where
the angular brackets denote the average over time, and
can be written in terms of ¥(7). The off-diagonal ele-
ments

Ax(—jo)xG—ktD=v¥((j—k)t—b)—¥((j—k)7),
(2)
(Ax(t —jr)Ax(t — k1))

=2%((—k)t)—v((G—k)t—b)—¥((j—k)z+b)
(3)

correspond to the first and second finite-difference deriva-
tives of ¥(7') evaluated at multiples of 7. When they are
zero, the directional elements of & are independent of
each other and the positional elements of £. Although
(£T¢) provides an accurate description of the statistical
dependence between the components of & for a Gaussian
random process, chaotic and other nonlinear systems have
higher-order correlations that are not included in this for-
mulation.

In order to show how the structure of the vector field
changes with t, it is convenient to construct a single
number that summarizes the set of Ly. One way of doing
this is to construct a weighted average of V; over all the
occupied boxes

/_\=< (Vj)z—(R:,ij)2> @

1—(Ri)?

For a deterministic system A =1, while for a random
walk A =0.

In the Lorenz system (Fig. 3), A falls off slowly with
7—this is due to sensitive dependence on initial condi-
tions destroying the deterministic connection between the



VOLUME 68, NUMBER 4

PHYSICAL REVIEW LETTERS

27 JANUARY 1992

Lorenz System

. ® Deterministic

LN © Randomized

b Y

FIG. 3. A vs 7 for a gridding of 32° for the signals of Fig. I;
v(r).

elements of & for large . For the randomized signal, A
falls off similarly to ¥(7) [16].

We now consider the application of this technique to a
high-dimensional system. Previous work on delay-dif-
ferential equations has shown that, for long time delays,
attractors of high dimension are found in the delay equa-
tion

dx _ _ax(t—8)
dt  1+x(t—98)

that has been proposed as a model for nonlinear feedback
control in physiology [17]. For a=0.2, b=0.1, ¢ =10,
and § =100, Eq. (5) has an attractor whose estimated di-
mension is ~7.5 [3].

Figure 4 shows L? for x(¢) and for a random time
series with the same ¥(7°), each of length 1.32x10° time
units. The box edge length ¢ needs to be large to ensure
that many boxes are traversed more than once by the tra-
jectory. The coarse resolution causes L¢<1 for the
deterministic system, but even so, L,°> L¥ > L}, indicat-
ing that the higher-dimensional embeddings are untan-
gling the trajectory. In contrast, for the random time
series, Z,,'O:c Ij,f. At the low resolution of coarse graining
used for d =8, 10, almost all the boxes are at the extremes
of the trajectory cloud, where there is a directional bias
towards the center even for the random signal. This
causes the slight difference between R and the random
signal’s L. Nonetheless, the L¢ for the deterministic sys-
tem are clearly above those for the randomized time
series. This remains true when random noise is added to
x(t), even for signal-to-noise ratios as poor as 20 dB (for
d=10). The statistic A shows a complex dependence on
7 due to the delays contained in Eq. (5), but A for the
deterministic system stays above A for the random system
for 7 as large as 200 [18].

The method sketched out in this Letter is directed at
establishing whether a time series is generated by a deter-
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FIG. 4. L¢ vs n for d =4,8,10 for x(r) from Eq. (5), and for
a random signal with the same ¥(T). t =75, near the first zero
crossing of ¥(T). A gridding of 4¢ was employed for d =8,10
and of 16* for d =4.

ministic system. Although in principle L¢=1in a deter-
ministic system, this is observed only as e— 0. This limit
on € requires infinitely long data sets and would be de-
feated by even small amounts of measurement noise. In a
practical situation with finite ¢, two comparisons can be
made: Ef can be compared to E,‘," to establish whether
there is any evidence for a deterministic mechanism, and
the values of L¢ can be compared to those generated from
(ETE) to establish whether the determinism indicated by
LY goes beyond that which would be found in a randomly
forced linear dynamical system. For the linear system,
appropriate choice of 7 and € causes LY — RY, so the two
comparisons become equivalent. The fact that the
method provides intrinsic estimates of the error in its
statistic LY, coupled with its ability to analyze high-
dimensional systems, should make the method useful in
the analysis of complex dynamics from diverse sources.
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