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Scaling Regime of Spiral Wave Propagation in Single-Diffusive Media
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We report uniformly scaling rotor solutions of the free-boundary problem of wave propagation in

reaction-diffusion models of single-diffusive excitable-oscillatory media with a unique wavelength and ro-
tation frequency obeying the Fife scaling A, -t. -' ' and co-e ' '. In simulation of the models, the small-e
rotation regime appears to always be non-steady-state but, remarkably, it remains partially describable
in terms of these solutions.

PACS numbers: 82.40.Fp, 87.90.+y
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is one of the simplest caricatures of single-diffusive (no v

diffusion) excitable-oscillatory media which, despite its
simplicity, already captures many intricate features of
spiral wave behavior (for a recent survey see Ref. [2]).
In this model, e is the usual small parameter characteriz-
ing the abruptness of excitation, y is a fixed parameter of
order unity, and 8 (varying in the interval [—J3,0]),
controls the properties of the medium: excitable (oscilla-
tory) with a stable (unstable) spatially homogeneous
fixed point of the system (1),(2) (by symmetry the inter-
vals [ —J3,0] and [O, J3] are equivalent).

Over the years, two central theoretical problems con-
cerning rigidly rotating spiral waves (rotors) have at-
tracted particular attention. The first, the problem of
selection, has been to understand how to predict the
uniquely observed rotor shape and angular frequency m

of shape-preserving rotation. The second, the problem of
scaling, has been to understand how the overall size and
frequency of rotors scale with the small parameter e.
These two problems have been investigated theoretically
within a free-boundary (FB) formulation of spiral wave
propagation [3,4] which follows from the singular nature
of the two-dimensional u-field profile in the small-e limit.

Fife [3] conjectured that there should be a unique solu-
tion to this problem which corresponds to the rotor ob-
served in numerical simulation of RD models. Further-

Spiral wave propagation has come to be recognized as
an important spatiotemporal behavior observed in a wide
range of excitable and oscillatory media of physical,
chemical, and biological origin [1]. The fundamental in-

terest in these waves, in the broad context of pattern for-
mation, and their relevance to human health, in the con-
text of the heart muscle [1], have jointly contributed to
trigger a growing interdisciplinary effort to understand
their propagation.

Theoretical investigations of spiral waves have been
conducted predominantly in two-variable reaction-diffu-
sion (RD) models. The FitzHugh-Nagumo (FHN) mod-
el,

8Q =t. V u+3u —u —v,
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more, using general scaling arguments, he proposed that
the frequency and wavelength of rotors should scale, re-
spectively, as e ' and e in the e 0 limit. More re-
cently, Pelce and Sun [5] solved the FB problem for a
piecewise-linear single-diffusive RD model and demon-
strated for the first time explicitly the existence of smooth
rotor solutions (no discontinuities) rotating around an
effective hole of radius R. Since the solutions of these au-
thors were obtained numerically over a restricted range of
e, the questions remained as to whether these smooth
solutions persisted in the e 0 limit where the FB for-
mulation is supposed to be valid, and as to whether the
selected rotor frequency would obey Fife's scaling. In re-
cent studies [6], we showed that solutions with a smooth
core and continuous variations of v along the boundary
only persist in the e 0 limit in a parameter range
$3+8-e'~ where the kinetics of the FHN model is only
weakly excitable (meaning that the threshold perturba-
tion needed to cause an excitation is large). However,
since the parameter range J3+b-e' constitutes a van-
ishingly small portion of the entire excitable-oscillatory
range b'=[ —J3,0] in the e 0 limit, the questions have
remained as to what the solutions of the FB problem for
arbitrary 6 become in that limit, and as to what extent
they can describe numerical simulation results of single-
diffusive RD models. There is presently a particularly
strong motivation to examine this limit in view of the re-
cent numerical simulation findings of Winfree for the
FHN model which have shown evidence of Fife scaling
and a predominance of unsteady rotation at small e [2].

In this Letter, we construct the leading-order rotor
solutions to the FB problem of single-diffusive media
which possess uniform scaling properties in the t. 0 lim-
it ["uniformly scaling rotor solutions" (USRS)], and ex-
amine their connection to the underlying rotor solutions
of the partial differential equation system (1 ),(2)
(RSPDE).

We shall find that these solutions have a front and a
back boundary of identical shapes (Fig. I) separated by a
finite angle h, O related to 6 by the relation
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:3- consistently turn out to be of O(c't') at the end of our
calculation. It is easy to deduce that for small v the func-
tions h —(v) take on the asymptotic form h —(v) = + v 3—v/6+O(v ). Substituting these forms of h —(v) into
Eq. (7) and writing down explicitly the equation in each
region S —we obtain

[ e9[Ofl

FIG. 1. Uniform rotor solution shown here for angle
AO = 120'.

and have an angular rotation frequency and wavelength

given by
2/3

tr(3 —8-')
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~here 8=1.738. . . is a constant determined numerically.
The only condition for the validity of these solutions is

that e't « J3+B. Consequently, USRS survive in the
limit e 0 over almost the entire excitable-oscillatory
range of 6', except in the narrow weakly excitable range
J3+8- e 't' where one must recover the smooth rotor
solutions constructed previously [5,6].

We start our analysis with the well-established equa-
tions of the FB problem of rigid rotors [3-5] which, for
the system (l),(2), take the form

—J$+~+(y+ -„) (n'),
JY+a+(7+ —,', ) (.n -) .

We can neglect the terms of order ( in Eq. (g) since by
assumption i is small compared to unity. This can al-

ways be done in Eq. (8) since 8 varies over the range
[ —J3,0]. However, in Eq. (9) the terms of order ( can

only be neglected as long as 43+6)) v. Since v turns out
to be of 0((.'.), it is precisely this constraint which in

the end will imply that the solutions we derive here are
valid only in the range (.' '« J3+(5. Next, integrating
Eq. (8) from 8 to 8+ and Eq. (9) from 8+ to 2m+8
we obtain at once the expressions

(;=v,'+ [(iY-a)/~](8' —8-),
((,+ =((, —[(43+8)/co][2n —(8+ —8 )].

(10)

It then follows that Eqs. (10) and (11) only have solu-
tions if 60=—0 —0 and vb

—have constant values given,
respectively, by Eq. (3) and vb

—= + tr(3 —8 )/2v 3to.
Also, from the constancy of h, O, it follows that the front
and back boundaries must have identical shapes. We
only need to consider one of the two boundaries to com-
plete our solution and arbitrarily choose the front bound-
ary. We express Eq. (6) in terms of the variable ++

rd8+/dr an—d use the small-v expression for the plane-
wave velocity c(vb+) = —vb+/J2+O((vb+) ), which is

easily derivable [4]. Furthermore, we perform the scale
transformations to = 0(. ' and p =JA e r. After
simple algebraic manipulations Eq. (6) can be trans-
formed to the final e-independent form:

(o + h —(v) —
(5

—
yv =0.

0
(7)

Equation (6) relates the local normal velocity of the

boundary, separating two regions S — of positive and

negative u, to the local values of the slow variable i on

this boundary ((b) and the local curvature (r. Equation
(7) dictates the evolution of v in the two regions 2)—
where the functions h —(v) are implicitly defined by the
largest positive root h+(v) and smallest negative root of
h (( ) of the equation 3u —u —v =0 describing the u

nullcline. We parametrize the rotor boundaries by the
coordinates x =r cos[8 —(r) —tot] and y =r sin[8 —(r)
—tot], where the + and —signs refer to the front and
back boundaries.

To construct the solution we first derive explicit expres-
sions for v(, on the front (v(,+) and back (vb ). We first
assume that vb is uniformly small, which does not consti-
tute an additional assumption since its value will self-
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where B:(3 —6 )(r/2460—'-. Equation (12) is identical

in form to the equation of Burton, Cabrera, and Frank
governing the growth of screw dislocations on crystal sur-
faces [4,7]. It results here from the requirement that for
USRS to exist i must be constant along the front and

back boundaries [Eqs. (10) and (11)]. The solutions of
Eq. (12) satisfying the boundary conditions ++(0) =0
and ++(r)—r for r —~ can easily be shown by shooting
to exist for a unique value of B =1.738. From the expres-
sion for B and the definition m=0, p ', we obtain at
once the scaling result (4). It also follows that ((,——e' '
and from the asymptotic form of Eq. (12) that
=2trBe '/JO [Eq. (5)]. Finally, alth-ough for clarity of
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exposition we have derived our results for the FHN mod-

el, they can be extended to other single-diffusive R D
models [8].

The USRS have both a slope discontinuity (SD) along
the boundary (except for h8=a) and a discontinuity of v

at the origin. These singularities could appear at first to
be incompatible with the RSPDE which must be continu-
ous, as viewed previously [4]. However, there is no a
priori incompatibility since these solutions only describe
the shape of the boundary between S+ and S on a
scale of O(e ~ ) which, in the e 0 limit, is much larger
than the small core region of size e around the origin,
within which both u and v have rapid spatial variations.
To establish the existence of RSPDE one needs to deter-
mine if the solution of the PDE on the scale e of the core
can be matched to the USRS on the scale e . In the
case h, O =n, where no SD arise, this core solution is sim-

ply derivable analytically and given in polar coordinates
(r, )=8—cot) by u =J3tanh(43/2rcos4t/e), which sat-
isfies trivially the no SD boundary condition of the USRS
at the origin, and v = —e'~ I) 'flu(r, P')dP' which

matches smoothly onto the solution of Eqs. (10) and (11)
in the limit r/e ~. It should be noted that, although
benign, the small core can generate significant higher-
order corrections of order e''~ to the shape and frequency
of RSPDE that will be treated elsewhere [9]. In the
more generic case where SD are present (68&@), the ex-
istence of core solutions remains to be established. How-

ever, what can be stated with certainty is that, if these
solutions exist, then the RSPDE should have a shape
which corresponds on the large scale [of O(e )] to the
USRS with a frequency and wavelength given, respec-
tively, by Eqs. (4) and (5). This represents one of the
most interesting aspects of our results with regard to
spiral pattern selection: The dynamics of the short scale
(e) is tied to that of the large scale (e ) and the effect
of the core on frequency and shape selection is benign in

the e 0 limit.
To explore the connection between the USRS and the

full rotor dynamics of the PDE, we have compared the

analytical results with the numerical simulation results of
Winfree [2] which span a wide portion of the parameter
plane (6', e) of the FHN model, also including a few addi-

tional data points from our own simulations which extend

to smaller t. in the case 8=0. It is apparent from Fig. 2

that, in the case h, 8=x, the observed co are in relatively

good quantitative agreement with the analytical predic-
tion and the expected scaling behavior. This agreement
persists even at smaller values of e where rotation be-
comes non-steady-state (most likely due to the char-
acteristic meandering oscillatory instability of RSPDE
[10]). This is consistent with the observation that near
68=x the amplitude of meander (measured as the diam-
eter of a circle enclosing the excursions of the tip)
remains at least 1 order of magnitude smaller than the
rotor wavelength and, thus, has a minimal effect on the
rotation frequency. In Fig. 3, it is apparent that away

1.0
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FIG. 2. Log(co) as a function of log(e) for the case 8=0.
The solid line corresponds to the analytic prediction for co [Eq.
(4)l, the circles to the numerical simulation results of Ref. [2]
for the FHN model (l),(2) with y= —,', and the triangles to our
numerical results of the same model with y=O. Note that Eq.
(4) does not depend on y so that both sets of results can be
used. The solid symbols (circles or triangles) correspond to
steady-state rotors while open symbols correspond to non-
steady-state rotors. In the case of non-steady-state rotation, an
"average co" is computed from a value of the period averaged
over several rotation cycles.

from A8 x (bWO) the agreement between analytics and

numerics becomes poorer, in particular at smaller t. . This
in turn is consistent with Winfree's observation that the

amplitude of meander increases dramatically with in-

creasing )b~ and decreasing e, becoming comparable to X.

As ~b( is increased further, the weakly excitable limit

43+b-e'~ is eventually reached where stable [11] rotor
solutions with smooth cores exist [5,6].

I

E =0.0081
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FIG. 3. ro as a function of ~h~ for three values of e. The solid
lines correspond to the analytic prediction for co [Eq. (4)l and
the circles to the numerical simulation results of Ref. [2]. Solid
(open) circles correspond to steady-state (non-steady-state) ro-
tation.
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To conclude we note that the USRS provide exact
leading-order-in-e analytical predictions of wavelength
and frequency of spiral patterns that should be applicable
to a wide range of experimental systems described by the
single-diffusive reaction-diffusion equation [8]. These
predictions should be most accurate at small e and in pa-
rarneter ranges corresponding to AO near m. Away from
this range, they still provide a good estimate despite the
predominance of non-steady-state rotation. Surface reac-
tions [12], where concentration spiral patterns can be ac-
curately studied and e is especially small, are perhaps the
best characterized sing]e-diffusive systems in which to
test these predictions.
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