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A new asymptotic behavior of reversible pseudo first-order binary chemical reactions is revealed by
time-resolved Buorescence measurements of excited-state proton transfer. The asymptotic behavior
is a power-law rather than the exponential decay expected from the chemical rate equations. Unlike
the conclusion from mean-field approximations, the power seems to increase with concentration.
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Bimolecular chemical reactions in solution are essen-
tially a many-body problem. The conventional rate equa-
tion approach [1], which neglects the spatial distribution
of the reacting particles, is satisfactory for intrinsically
slow reactions. When the reaction is diffusion controlled,
competition between reacting particles introduces corre-
lations in their diffusive motion. This should be mani-
fested in the long-time dependence of the reactive con-
centrations. Specifically, we consider a recombination-
dissociation reaction written symbolically as

A+B AB.

When [A] « [B]:—c, the reaction is pseudo first order.
B particles from a homogeneous concentration c com-

pete for binding to an A particle. B may be a proton
which binds to a base, A, to produce an acid AB, a sub-
strate binding to an enzyme to form an enzyme-substrate
complex, and so on. A and B diffuse in solution (diffu-
sion coefficients DA and Dg), though DA « DB. Upon
reaching a contact distance, r = a, they recombine with
an intrinsic rate coefficient rr. The bound AB molecule
is reflecting towards additional B particles, so that no
more than one B is bound at any given instant. AB may
in turn dissociate (with a probability rd per unit time),
producing an A. - B pair at contact.

The case K„= 0 is uninteresting since this leads to
unimolecular dissociation, characterized by an exponen-
tial decay of the initial AB population. The case Kd, = 0
(but r.„)0) represents irreversible many-body recom-
bination. The conventional rate equations of chemical
kinetics [1] predict an exponential decay of the initial
concentrations, except for the case of equal initial con-
centrations which produces a 1/t decay. Classical works

concerning the many-body aspects of this irreversible re-
action include those of Smoluchowski [2], Waite [3], Noyes

[4], and others. When the reaction is pseudo first order
and the initial distribution of B particles is random, the
Smoluchowski approximation applies [2]. When, in ad-
dition, A is stationary (DA = 0) it is exact [5, 6], and
may be extended to a mobile A by using a density ex-
pansion [7]. In three dimensions (but not in lower dimen-
sionalities) the Smoluchowski theory predicts an ultimate
exponential decay for the survival probability of the mi-

nority species, i.e. , the A particles. This coincides with
the rate-equation prediction, albeit with an effective rate
coeKcient which approaches r„only for intrinsically slow

reactions.
The study of bimolecular reactions as a many-body

problem has been pursued by physicists, treating pri-
marily the equal concentration and diffusion coefficient
case, [A] = [B] and DA = DB [8]. It has been shown,

by numerical simulations [9], scaling arguments [10], and
other methods, that the long-time behavior is determined

by the initial distribution. Fluctuations in the initially
random B-particle density lead to an ultimate power-
law decay of the survival probability, as summarized in

recent reviews [ll, 12]. To our knowledge, these inter-

esting predictions have not been tested by experiment,
since monitoring populations over many orders of mag-
nitude is required. Additionally, it is difficult to prepare a

sample containing precisely equal concentrations of (un-

correlated) A and B.
The situation is more complex when both rate pa-

rameters exceed zero ("reversible competitive binding" ).
The rate equations predict an exponential approach to
equilibrium [1]. Extensions of the scaling argument to
reversible reactions [10] has led to a power-law decay.
Unfortunately, such extensions overlook the fundamental
difference between the two situations: In the irreversible

case, the process ends with the first binding event, while

for a reversible reaction a recently bound AB molecule

may subsequently dissociate to reproduce the A . 8
partners, thus altering their spatial distribution. After
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a few cycles of recombination and dissociation the initial
distribution becomes irrelevant. One expects the densi-
ties to approach equilibrium, independently of the initial
condition and by following an asymptotic law which itself
should be independent of the initial distribution.

In the present Letter we deal with the pseudo Grst-
order case. The binding probability, 1 —8(t), is expected
to approach

1 —8(oo) = cK,q/(1+ cK,q)

as t ~ oo. Here 8 is the (many-body) "separation prob-
ability" [13] and K,q is the recombination equilibrium
coefficient

K,q
= 4na rc„e ( )/rc~.

The A Binte-raction potential (in units of the thermal
energy, kBT) is denoted by V(r).

Approximate (mean-field) treatments of the many-
body effect in reversible reactions have recently been con-
sidered [13—26]. Some of these are nicely reviewed by
Szabo [25]. A power-law asymptotic decay was first
demonstrated in a one-dimensional (1D) Brownian simu-
lation involving a "bimolecular boundary condition" [23].
Using the "superposition approximation, " a corrected
and simplified version of a theory by Lee and Karplus
[15], one finds [[25], Eq. (5.16)] that the binding proba-
bility for reactions in 3D behaves at long times (t -+ oo)
as

8(oo) —8(t) K,q 1

8(oo) —8(0) 1+cK,q (4mDt)s/z '

where D = D~ + D~ is the relative diffusion coefficient.
A similar result has been obtained by Burlatsky, Os-
hanin, and Ovchinnikov [22]. Equation (3) is valid ir-
respective of the initial distribution and for an arbitrary
spherically symmetric potential which vanishes at large
separations.

Equation (3) generalizes the asymptotic behavior de-
rived earlier [13, 27(b)] for a reversible geminate pair
(c = 0) whose relative motion may be treated as spher-
ically symmetric diffusion [28]. This reflects the prob-
ability of return to the origin of a random walker in
3D. We have studied isolated pair kinetics experimen-
tally in a nearly ideal system [27]. The experiments in-
volve laser excitation of a solvated ROH dye molecule
(8-hydroxypyrene 1,3,6-trisulfonate, HPTS), which disso-
ciates in the excited state to produce a geminate proton—
excited anion pair. Thus 8(0) = 0. The solvated proton
is attracted by the quadruply charged excited anion and
recombines with it reversibly, without quenching it to
the ground state. This increases the fluorescence signal
from the excited ROH acid above that expected from a
single-step exponential dissociation process. The proton
subsequently redissociates and, after several dissociation-
recombination cycles, diffuses to such large distances that
further recombination becomes unobservable.

Using time-correlated single photon counting (TC-
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FIG. 1. Fluorescence decay of HPTS in water at pH=6.
Points are TCSPC dsts [29], after background subtraction
using b = 2.2 x 10, g = 9.5 x 10 Tg —5 ~ 5 nsec, and ~f ——

5.1 nsec in Eq. (4). The solid line is s numerical solution to the
Debye-Smoluchowski equation with parameters [cf. Eq. (2)]
similar to those of Ref. [27]: a = 7 A, Kz

——125 psec, e„=
7.4 A/nsec, V(r) = Rrp/r (i.e. , no scree—ning at high pH),
Ro = 28.3 A, snd D = 930 A /nsec. The numerical solution
has been convoluted with the instrument response function
determined in Ref. [27(f)]. Inset: The same dsts on s linear
scale, emphasizing the short-time behavior.

SPC), it is possible to follow the blue ROH fluorescence
signal to long times with good signal-to-noise ratio. As
can be seen from the log-log plot in Fig. 1, the data in
water cover more than 3 orders of magnitude. These are
in excellent agreement with the exact numerical solution
(solid line) of the time-dependent, spherically symmetric
Debye-Smoluchowski equation for a Coulomb potential
and a back-reaction (reversible) boundary condition at
contact [27). It can be shown analytically [13] that this
theory exhibits an asymptotic power-law decay with a
power of —d/2 in d dimensions. Thus, under the exper-
imental conditions, the excited-state kinetics reQect pri-
marily the effect of proton diffusion. Dynamics in other
degrees of freedom (vibrational, dielectric or solvent re-
laxation) occur faster than the ca. 100 psec dissociation
time and are averaged out.

We now extend this study to the pseudounimolecular
case. By adding controlled amounts of acid the concen-
tration c of homogeneous protons can be varied. Unlike
the geminate case, where multiple dissociation cycles lead
to ultimate escape of the geminate proton, we expect the
low pH fluorescence signal to approach the finite equilib-
rium limit of Eq. (1). By carefully subtracting the t ~ oo
plateau, we hope to obtain an experimental indication
for the ultimate approach to equilibrium. This will pro-
duce a first experimental proof for deviations from con-
ventional rate equations for bimolecular (nongeminate)
reactions in excited-state proton transfer to solvent [30,
31) and test the long-time behavior in Eq. (3).

In order to obtain meaningful results, careful back-
ground subtraction has been applied and optimized to
the high pH data of Fig. 1. It was subsequently utilized
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FIG. 2. The pH effect on HPTS fiuorescence signal. Ap-
proximate proton concentrations are (bottom to top): 0.001,
0.3, 0.7, 1.5, 4, and 15 mM. Data [29] are shown after
background subtraction, lifetime correction, and numerical
smoothing as described in text. Thus the lowest curve repre-
sents the data of Fig. 1 after smoothing.

FIG. 3. Long-time approach to equilibrium in excited-
state HPTS dissociation in aqueous solutions of various pH
values. Obtained from the data in Fig. 2 by subtracting the
following equilibrium values (top to bottom), 1 —S(oo) = 0,
0.004, 0.012, 0.023, 0.054, and 0.126.

without change at the lower pH values. This small back-
ground, ignored under normal operating conditions, is
important when probing over many decades in intensity.
It results from remnants of the green anion fluorescence

(a fraction g with a lifetime w~), not completely elimi-

nated by the blue filter, and from fluorescing impurities
(fraction 6) in the HPTS sample (Kodak, ) 99'%%uo chem-

ically pure). Given the TCSPC signal I(t), whose max-
imum (near t = 0) is I~ = 60000 counts/channel, we

calculate the binding probability from

1 —S(t) = h[I(t)/I —ti —gS(t)e ' '] e'

(4)

The correction for the ROH Huorescence lifetime, ~y, al-

lows us to consider the reactants as if they live forever in
the excited state. The data are normalized so that their
height (h = 0.73) coincides with the peak of the theoreti-
cal curve, after its convolution with the measured [27(f)]
instrument response function (FWHM~55 ps). Finally,
we have applied a numerical (25 point) data smoothing
routine effective in white-noise filtering.

The solution pH has been lowered by adding HC104
from a micropipette and subsequently verified by a pH
meter. With the addition of homogeneous protons, an
equilibrium plateau indeed develops (Fig. 2). As ex-

pected, 1 —8(oo) is higher the larger the proton con-
centration. The excited-state equilibrium coefficient can
be calculated from this value via Eq. (1). K,~ decreases
with increasing c due to self-screening by the protons. We
have found [27(g)] that this "equilibrium salt efFect" is

well described by the Debye-Huckel theory. This demon-
strates that a true (quasi)equilibrium state is achieved in

this reaction, limited only by the finite radiative lifetime.
The approach to equilibrium is obtained by subtrac-

tion of 1 —8(oo), as determined by averaging the data
numerically between 10 and 15 nsec, from the transient
decay. Results shown in a log-log scale (Fig. 3) clearly

exhibit a power-law approach to equilibrium. The sur-
prise is that the asymptotic power n is not independent
of concentration: It is 3/2 at infinite dilution and seems
to increase with c

P( ) —~(t)]/P( ) —~(0)] - &/t (5)
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FIG. 4. Dependence of the asymptotic slope, Eq. (5), on

proton concentration. Solid circles were obtained f'rom the
data of Fig. 3, while open circles represent a more recent set
of measurements.

A dependence of the asymptotic behavior on concentra-
tion has been observed in a different reversible system

[17] namely, B+B ~ B. For the reaction under con-
sideration, a variable o. has not been predicted by the
approximate theories. To verify that the observed efFect
is reproducible, experiments have been repeated a year
later yielding similar results. Figure 4 shows values of
the asymptotic slope obtained by linear regression in the
range 0.3—3.0 nsec (0.3—5.0 nsec for pure water), with a
correlation coefBcient 0.990—0.998. There is a nice agree-
ment between both sets of data, though the absolute val-

ues of o. depend on the range chosen for linear regression.
The decrease in the intercept of the linear fits to the data
of Fig. 3 is attributed by Eq. (3), in the small c limit, to
the decrease of K,~ with screening. We indeed find a
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qualitative agreement with the values of K,q determined

[27(g)] from S(oo).
Since an increase of o, with c has not been predicted

by any of the mean-Geld approximations, we have tried
to detect it in 1D Brownian simulations [23]. In these
simulations, n noninteracting random walkers on a lin-

ear lattice of / sites compete for reversible binding to a
static, single-particle saturable trap. When the concen-
tration, c = n/l, is increased by decreasing l we find that
n increases above its infinite-dilution value of 2, but as
n is varied for fixed l there are no detectable changes
in a. This suggests that in the thermodynamic limit of
an infinitely large lattice, n for noninteracting random
walkers in 1D is independent of concentration. It could
be that proton-proton repulsions in 3D are in some sense
analogous to limiting the diffusion space to a finite do-

main, thus leading to variations in n. This, as well as
other possible sources for such variations, remains under
investigation.

In conclusion, a new asymptotic behavior of reversible
binary chemical reactions in solution has been revealed

by experiment. While the short-time behavior is affected
by the initial distribution and the interaction potential,
the long-time behavior carries the imprint of the equa-
tion of motion governing the time evolution, which is the
fundamental reason justifying its study.
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