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Model colloids composed of two widely separated sizes of polystyrene spheres are studied at high

volume fractions using an optical, multiple-scattering technique. These measurements probe hydro-

dynamic forces between unlike particles, as well as static, structural predictions made using the Percus-
Yevick approximation. The dynamic data corroborate currently available hydrodynamic theories on

very short length scales; the dynamic data also reveal a new, experimentally accessible range of inter-
mediate length scales which currently available theories cannot explain.

PACS numbers: 82.70.Dd, 05.40.+j, 42.20.—y, 61.20.Gy

Asymmetric binary colloids present fundamental geo-
metric questions about particle packing and interparticle
forces. In contrast to uniform dispersions, binary colloids
contain two distinct types of particles whose interaction
depends on their relative size [1]. This extra degree of
freedom introduces a complex, short-range order that can
produce a much richer variety of phases at the solid-
ification point [2] and in the pure liquid [3]. Particle-size
asymmetry also leads to instabilities and new dynamic
structures in sedimenting colloids [4]. The character of
these dynamic structures is controlled by the hydro-
dynamic interactions between different particles. In equi-
librium systems, these same hydrodynamic interactions
determine the Brownian diffusivity of particles and,
therefore, set the time scale of the kinetics for phase tran-
sitions.

While hydrodynamic interactions between particles in

polydisperse systems have attracted considerable theoreti-
cal attention in recent years, there has been little experi-
mental work [2,5-7] that critically tests emerging the-
ories [8]. Surprisingly, few experimental studies have
tested the static structure of highly asymmetric, binary,
hard-sphere systems [5], although predictions based on
the Percus-Yevick approximation have been available for
some time [9]. This situation has arisen, in part, because
traditional optical techniques are diScult to apply to
dense colloids as a result of strong multiple light scatter-
ing. In this paper we present new diffusing-wave spec-
troscopy (DWS) [10] experiments which exploit multiple
light scattering to probe diffusion and structure in dense,
binary hard-sphere suspensions. This information is ex-
tracted within DWS theory by modeling photon transport
as a random walk. Our work explicitly probes the hydro-
dynamic coupling between unlike spheres and thus repre-
sents a first step towards elucidating the role of particle-
size asymmetry and concentration in multicomponent
diffusion theories. In addition, we probe the structure of
highly asymmetric, binary mixtures of hard spheres at
high densities and test calculations of the static partial
structure factors determined within the Percus-Yevick

TABLE I. To probe similar physics on different length
scales, we study three systems with the same ratio of particle di-
ameters but different absolute sizes.

at (ttm)
a,g (pm)
a=aslat

kpa(.

Small

0.205
0.065
0.32
0.045
3.3

Medium

0.625
0.205
0.33
0.051

10.1

Large

2.00
0.625
0.31
0.102

32.2

approximation for widely separated particle sizes. Final-
ly, we extend the theory of DWS to strongly interacting
binary colloids.

A first glance at the data highlights the importance of
interparticle dynamics and interparticle ordering. Mea-
surements were made on three mixtures of polystyrene
spheres with the same ratio of diameters but different
average particle size (Table I). Measured differences be-
tween the systems are a result of the dependence of DWS
on the ratio of particle size to wavelength. In each sys-

tem, the volume fraction of large spheres pt is held con-
stant and the volume fraction of small spheres ps is

varied. In Fig. 1 we plot the reciprocal of the photon
random-walk step length I/I* as a function of ps. This
quantity, 1/I*, is analogous to the resistivity of a binary
liquid alloy [11]. In the first approximation these graphs
are straight lines; that is, the optical resistivity is propor-
tional to the number density of scatterers. Deviations
from straight lines are a result of particle ordering, which

decreases the optical resistivity. The effects of ordering
are most remarkable in the smallest system where 1/I*
actually decreases with the addition of scattering parti-
cles. In Fig. 2 the effective diffusion coeScient D„g nor-
malized to the value for a system with no small spheres is

plotted as a function of small-sphere volume fraction ps. .
Notice that Dc~r first increases with III' and then begins to
decrease. This unusual behavior is the result of two
mechanisms: the increasing contribution of small parti-
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FIG. 1. Measurements of the reciprocal photon transport mean free path l/I* show the effects of interparticle structure. Calcula-
tions using the full PY binary hard-sphere structure factors (solid line) agree with the data and differ most from a noninteracting
theory (dotted line) and a theory without interspecies structure [l4] (dashed line) when the particles are smaller than the wavelength
of the probe.

cles to the scattering as t()» is increased and the hydro-
dynamic coupling between large and small particles. Our
measurements represent the first experimental determina-
tion of this coupling.

To measure I* and D„&, we employ standard DWS
techniques. Samples in 0.5- or 1.0-mm-thick cuvettes are
illuminated from one side by the 514-nm line of an Ar-
ion laser, and the intensity of a single speckle of transmit-
ted light is monitored. By comparing the average intensi-

ty to known monodisperse samples, we deduce I* [12].
Using I*, we extract an effective diffusion coe%cient

from the first cumulant of the measured intensity auto-
correlation functions, whose time dependence is propor-
tional to the square of the field autocorrelation function
g((r)—= (E(r)E (0))/(~E~ ). For multiply scattered
light, DWS theory gives [10]

f+ 00
Sg((r) = P(s)exp —2 koD„(rr ds,Jp

where P(s) is the fraction of detected photons that trav-
eled a distance s through the sample and kp is the laser
wave vector in the solvent. The spheres are polystyrene
suspended in water. We estimate the screening length of
the polystyrene spheres in suspension to be -40 A so
that the interparticle potential is essentially hard sphere.

Two aspects of binary colloids are important for under-

standing our measurements: static particle ordering and

dynamic particle diffusion in the presence of other parti-
cles. The static problem is solved using only the hard-
sphere interaction potential to calculate I*. A full solu-
tion of the dynamic problem requires knowledge of parti-
cle hydrodynamics and interparticle structure.

+2S/s(q)Re(fI (q)f& (q))(pI p») '- (3)

where F(q) =~f(q)~2 and f(q) is the dimensionless, far
field, single-scattering amplitude. The partial structure
factors are defined as a sum over a)l particle positions r
and r/a of types a and P:

SX(qx'0) = +exp(iq (r —r()/ai) )/(/V. /VX)
'

I/

Since F(q) is known from Mie scattering theory, the only
missing elements of the calculations of I* are the partial

The static problem can be reduced to the calculation of
interparticle partial structure factors in a binary system
[13]. Within the diffusion approximation for photon
transport, the key quantity is the photon random-walk
step length I, which depends on the number of scatter-
ing events needed to randomize the direction of a photon;
this number depends on the scattering properties of indi-
vidual particles as well as spatial correlations between
particles [14,15]. A general expression for I* is [14,16]

400I* =k(6)a' /rp I(q)q 'dq- (2)

where p is the number density of particles, a is the parti-
cle diameter, and q =(ko —kf)a is the dimensionless
momentum transfer for a single-scattering event. In a
monodisperse system, 1(q) is simply the product of the
form and structure factors F(q)S(q). In a binary sys-
tem, we still calculate I* using Eq. (2), but now we re-
place p with pr +p», a with a/ (following the convention
of Ref. [17]),and l(q) with

I (q) p = S/ I. (q) F/ (q )pl. +S»» (.q) F» (q)p»
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&16. 2. Hydrodynamic interactions decrease the effective diffusion constant. The solid line is the fully coupled theory, with m II

given by Eq. (6). The dashed line ignores forces between balls of different sizes (m /)=6, /(B/2), and the dotted line ignores forces be-

tween particles (m,()=0). The dramatic failure of the theory for the small system indicates the importance of having a full

wavelength-dependent hydrodynamic theory.
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structure factors, which measurements of l* directly
probe.

Of the many schemes available for calculating the
thermodynamic properties of disordered systems, the
Percus-Yevick (PY) approximation has an analytic solu-

tion for dense hard-sphere systems. Our calculations of
I*, based on the PY structure factors [17], are presented
with the data in Fig. 1. For the small and medium

particle-size systems, the theory is in excellent agreement
with the data; for the large particle-size system, the
agreement is still quite satisfactory although PY overesti-
mates 1/1* by approximately 10% for ps &0.2. To illus-

trate the importance of using the full structure factor, we

also plot the results of a calculation which ignore all in-

terparticle structure [S,s(q) =B,s] and results which ig-
nore just correlations between particle species [SLs(q)
=0].

The diA'erence between data sets results solely from the
diff'erent cutoffs in the integral over 1(q)q in Eq. (2).
By varying particle size, we probe the q dependence of
1(q). Measurements in the small system reveal the most
about the long-range structure of the colloid because they
are sensitive to relatively low q. Conversely, rneasure-
rnents in the large system reveal the most about the local
structure of the colloid. With the exception of computer
simulations [7], our work is one of the few experimental
tests of PY for a dense, highly asymmetric, hard-sphere
system. The excellent agreement for I* indicates that the
1(q) used in Eq. (3) is reasonable.

We consider the dynamic problem by building a
multiple-scattering theory from a single-scattering result.
In a single-scattering photon correlation experiment, D,g
is extracted from the first cumulant of gi(r). Following
the derivation of Ref. [18] for inonodisperse colloids and
ignoring hydrodynamics, we find for binary mixtures [15]

DLOFI (q)pI +DsoFs. (q)ps.
De ir (4)

where DID and Dqo are single-particle Einstein diA'usion

coefficients. This result is valid on time scales which are
long compared to the particles' viscous damping times
and short compared to the time it takes a particle to
diAuse an interparticle spacing. Note the absence of an
interspecies diffusion coefficient DLs in Eq. (4). This
term appears only after including hydrodynamic eA'ects,

and even then, it is diminished by a multiplicative factor
SLS(q), which approaches 0 at large q. In a multiple-
scattering experiment all wave vectors contribute, and the
observed diAusion coefficient is obtained by averaging Eq.
(4) over all scattering angles:

DLO[FL(q)]pI +Dso[Fs(q)]ps
[1(q)]p

where [X(q)]=fo 'Xq dq [19]. The dot-dashed line
in Fig. 2 shows that calculations of D„ir based on Eq. (5)
inadequately describe our data at all but the smallest ps.

To improve our description of the data, we must include

the hydrodynamic interactions between particles.
Since the hydrodynamic force between two particles

depends on their separation [20], the particle diffusion

coefficients in Eq. (4) are q dependent. Unfortunately,
there are at present no calculations for the q dependence
of DL (q) and Ds(q) [21]. However, the infinite-q limit,

where D(q) is equivalent to the short-time self-diffusion

coefficient, has been calculated by Batchelor [1]. To
linear order in the volume fraction, the self-diA'usion

coefficients in a binary system are given by

DI /DLQ mLL mLs 4L
(6)

Ds/Dso msL mss, Ps,

where Batchelor's calculations indicate that the hydro-

dynamic coupling constants are m,s=8/(I +a~/a, ) with

8=3.75 [22]. This beautifully simple result had never

been experimentally tested. Since we lack a q-dependent
theory for binary systems, we incorporate hydrodynamic
interactions by inserting the infinite-q result of Eq. (6)
into Eq. (5). Note that the q in the averages of Eq. (5)
weight our measurements towards large q where D(q)
approaches D(oo) [19]; thus, our approximation should

be asymptotically correct when the upper cutoff of the in-

tegrals in Eqs. (2) and (5) is large. We vary this upper
cutoff 2koaL by changing the absolute particle sizes by a
factor of 10 while keeping the relative particle sizes in

each mixture constant. Thus, changing the particle size
eAectively probes the q dependence of the dynamics, that
is, of D„rr(q).

The measurements of D„g in Fig. 2 show the eA'ect of
increasing the concentration of small particles. For the
two larger systems, D„rr rises as the diffusion of the small-

er, faster particles becomes dominant. At higher volume
fractions, the hydrodynamic couplings cause D, ir to de-
crease. Part of this decrease results from hydrodynamic
interactions between similar particles. To see this, com-
pare the dotted lines, calculated without hydrodynamic
coupling (m,Ii=0), to the dashed lines, calculated with-
out interspecies coupling (m, s =b,p8/2). The theory
with the full hydrodynamic coupling (solid lines) demon-
strates that interspecies hydrodynamic coupling is sig-
nificant for nearly all nonzero ps. By varying the cou-
pling coefficient 8 in the off-diagonal elements of Eq. (6)
and leaving the well-tested diagonal elements [16,19,23]
at their exact value of 1.83 [1],we find that the data are
best fitted by B=5.6~1.4 in the medium system and
8=3.7+ 0.4 in the large system. Batchelor's predicted
value is 8=3.75. Batchelor's expression is valid for the
infinite-q, large-koal limit; thus it is not surprising that it
fails to describe the small-particle system, where koal
=3.3. By contrast, Batchelor's theory describes the data
well for the large-particle system, where koal =32.

We conclude that Batchelor's expressions appear to
possess the correct concentration and asymmetry depen-
dence in the limit for which they are intended (infinite q)
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and that a q-dependent theory for the hydrodynamic in-

teraction is essential to understand smaller systems. Our
results illustrate that multiple-scattering spectroscopies
are practical probes of polydisperse systems and may be
of further use in understanding the dynamics and kinetics
of glass formation, freezing, and phase separation in com-
plex Auids.
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