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de Haas-van Alphen Eff'ect in Superconducting V3Si
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Quantum oscillations in the magnetization, periodic in inverse field (de Haas-van Alphen eff'ect), have

been observed in V3Si both above as well as below the superconducting critical field 8,2 of 17.95 T for
fields along the [100] direction and at 1.5 K. The oscillations have the same frequency (+'0.3%) in the
two field regimes. It is shown by intercomparing the amplitudes that quantum oscillation measurements
can be used to determine the field density distribution in the superconducting phase.

PACS numbers: 71.25.Hc, 74.70.Cf

The de Haas-van Alphen (dHvA) effect [1] is the os-
cillatory component of the diamagnetic susceptibility of a
metal. It is a result of two basic quantal properties of
electrons, namely, the quantization of their orbital motion
in an applied magnetic field [2-4] and the existence of a
Fermi surface (a consequence of their spin- —, statistics,
i.e., of the Pauli principle). Historically, the dHvA effect
has been extremely important in providing the most de-

tailed, comprehensive information about the size and

shape of the Fermi surfaces of metals and many interme-
tallic compounds [5], and a direct measure of the orbital-

ly averaged electronic scattering rate [6].
The conventional Lifshitz-Kosevitch derivation [1,7] of

the dHvA effect has implicitly assumed that one is deal-

ing with a metal in the normal (nonsuperconducting)
state. However, the quantization condition appears to be
so general as to apply also to a type-II superconductor in

the mixed or vortex state. As in the Aharonov-Bohm
(AB) effect [8], the magnetic flux is quantized via a line

integral

sional material. The only previous reports of a dHvA
effect below B,2 were those of Graebner and Robbins
(GR) for the hexagonal layered (quasi-2D) chalcogenide
2H-NbSez [10], and the recent observations of a dHvA
effect in YBa2Cu307 s, using oriented powders, by
Mueller et al. , Smith et al. , Fowler et al. [11], and by
Kido et al. [12]. However, the very high B,z value has so

far precluded any comparison of dHvA oscillations in the
two regimes for high-temperature superconductors.

Our dHvA amplitude data for V3Si have been analyzed
into two distinct fundamental frequencies, which are the
same to within ~0.3% in both the normal (B)B,z) and

superconducting regimes. In contrast, Graebner and

Robbins reported a 3% increase in frequency from above

to below 8,2, for a particular field orientation. However,
this frequency shift may have been due to the angle of
their magnetic field relative to the crystallographic axis

and to the way flux lines penetrate and move in an aniso-

tropic superconductor [13]. Also, 2H-NbSez is known to
contain a strong charge-density wave, which in other ma-

terials has been shown to modify the dHvA frequency
and harmonic content [13].

The dynamics of vortex motion has been well charac-
terized in V3Si through neutron flux lattice measurements

[14]. In fact, the single crystal used in the dHvA experi-

ments (discussed below) was cut from the ends of that
used in the flux flow experiments. The residual resistivity

ratio of the samples was about 30. The V3Si crystal ingot

from which samples were cut was prepared by the rf
induction-heated float-zone method at Oak Ridge Na-
tional Laboratory. Neighboring samples from this same

ingot are known from TEM measurements to be free of
second-phase inclusions, and previously were character-
ized extensively via measurements of normal and super-

conducting phase properties, by observations of the mar-

tensitic structural transformation near 21 K, and by ob-

servations of neutron diffraction by the flux line lattice in

the mixed state [14].

(2e/h) A ds 2trn, (1)
where n is the quantum number and the quantum of flux

is h/e 4.135704x10 ' Wb [9]. The flux quantization
condition (1) is independent of the distribution of flux in

the interior of the path integral. The eigenenergies are
given by E„(n+—,

' ) h co„where the cyclotron frequency

to, -eB/m
The implication of this reasoning is that type-II super-

conductors in the mixed or vortex phase should exhibit a
dHvA effect below 8,2 as well as above. But what is the
relationship of the quantum oscillations in the two re-
gimes~ In this Letter we examine this question in the
case of a standard and well studied type-II A15 materia1,
U3Si, with the magnetic field oriented close to the high

symmetry (100) axis. To our knowledge, the results re-

ported here are the first observation of dHvA oscillations
in the vortex state of an isotropic, fully three dimen-
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FIG. 1. de Haas-van Alphen amplitude for V3Si as a func-
tion of l/B. The solid line is the oscillatory part of the experi-
mental data and the dashed curve is a two-extremal-orbit fit, in-

cluding all harmonics. As is discussed in the text, the dHvA
frequencies are the same in the normal and superconducting
phases of V3Si, within experimental error (+'0.3%). The de-
velopment of the superconducting gap, 2h„does not alter the cy-
clotron frequencies; what is affected are the dHvA amplitudes.
Data between 17 and 18 T, reflecting irregular flux motion in
U3Si, are not presented.

Experiments were carried out at 1.5 K using a field
modulation dHvA spectrometer and a 19 T (maximum 8
induction field) Bittermagnet at the Francis Bitter Na-
tional Magnet Laboratory. The samples were mounted in
a single-plane spiral gear-driven sample rotator, with
which samples could be rotated in any crystallographic
plane, which could be preselected with a precision of
about 1 . An astatically wound pickup coil rotated with
the sample; a second, fixed pickup coil contained a gold
reference specimen, whose high-frequency "belly" dHvA
oscillations were used to locate the most homogeneous
field region, as the entire sample holder was translated in

a steady 8 field.
The solid lines in Fig. 1 illustrate dHvA oscillations

present both above and below B,2 for a V3Si specimen
with H parallel to [100]. The transition to the normal
phase begins at about 17.2 T (0.0583 T ') in the large
modulation field used in these experiments. Separate
low-modulation measurements showed that the transition
to the normal phase was complete at B,2 17.97 T in our
sample. The noise content of the two portions of Fig. 1

(H & 17 T and H ) 18.2 T) is the same, but the higher
field data have an amplitude about 4 times as large.
Above B,2, the osrillations in the normal phase appear to
have the same frequency as those observed below B,2,

though a precise determination of their frequency is com-
plicated by the occurrence of a beat minimum and by the

fact that only about five complete oscillations could be
observed between B,2 and the maximum H field avail-

able. The frequency of the oscillations at [100] is 1.98
(+ 0.08) kT, as determined from a plot of oscillation
number versus 1/8 .This corresponds to a cross section
that is approximately 10% of the Brillouin zone cross-
sectional area of 18.55 kT.

Because of the few oscillations observed, we analyzed
the amplitude data in the two regimes of Fig. 1 by means
of two "slow" Fourier transforms in 1/8, from which the
power spectral densities were calculated. Each transform
exhibited two separate peaks. For both regimes, one peak
was at about 1.98 kT, consistent with the "number plot"
discussed above. Each transform also exhibited a weaker
second frequency at about 1.49 kT. To better define the
second frequency, and because we wanted an intercom-
parison of results in the two regimes, we also have made
an amplitude analysis using Lifshitz-Kosevitch (LK)
theory [7,15].

In these experiments, the slowly varying H field was

modulated by -0.1 T (at H-19 T) at 50 Hz. Detection
was carried out using a phase-sensitive system, tuned to
the third harmonic. The dHvA fundamental amplitude
was minimized by adjusting the modulation amplitude.
This adjustment slightly complicates the amplitude
analysis, since we need to calculate the third derivative
with respect to B of the LK magnetization for compar-
isons with the data. For a given set of fitting parameters,
we have done this numerically with sufficient precision
that the third derivative of the magnetization was accu-
rate to better than 1 part in 10 . Another experimental
concern for the amplitude analysis is that the large modu-

lation amplitude will induce flux flow and screening
currents that may reduce the dHvA amplitude. However,
flux pinning has been studied in VsSi in the high-T, low-

H and the low-T, moderate-8 limits [14], and these mea-
surements can be used to estimate the possible influence
of flux flow on the dHvA signal under our experimental
conditions. Using a critical state model, the maximum
value of AH/dr in a 1-mm-diam cylindrical dHvA sample
can be estimated from hH(G)/hr(cm)-(4x/10) J, (A/
cm ), using J,[H 1 T, T 4.2 K] 10 A/cm, and

J,-B ' (I —8/8, )zto scale the calculation to H 15
T, near the low end of the range in which we observe
dHvA oscillations in the mixed state. This results in

J,(15 T)/J, (1 T) 0.008, and a radial variation AH-4
6 between the outer surface and the center of the V3Si
sample. This variation is negligible relative to the period,
P H /F, of the dHvA oscillations (P-1100 or 1500 G
at 15 T), and becomes still smaller with increasing H.
This calculation also indicates that diamagnetic hysteresis
is small relative to the dHvA period.

Initially each data regime was fitted separately and pa-
rameters for the dHvA amplitude, frequency, phase, or-
bital mass m*, and Dingle temperature TD were varied.
Different minimalization runs had different numbers of
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Above 8,2

1.494+ 0.003
1.986 W 0.003

Belo~ 8,2

1.498 + 0.003
1.987 + 0.003

TABLE I. dHvA frequencies (in kT) for V3Si above and
below 8,2.

rather than using B itself. [21]. For fiuxoids in a perfect
V3Si crystal, the field distribution function N(p) exhibits
both the jump singularities and logarithmic divergences
of different two-dimensional van Hove singularities [21].
These distributions are not only integrable, but they have

convergent Fourier developments as

base frequencies (along with all of their LK harmonics).
We conclude that two independent frequencies (with
their harmonics) are well supported by these data. In
Table I we show results for the two frequencies, fitted
separately above and below B,2. Although there is a
slight shift upward in frequency in these data, similar to
that seen in GR, we think it is barely statistically sig-
nificant. The increase seen here is less than 0.3% (and
for only one orbit), whereas that in GR was 3.0%. This
point is significant for theoretical interpretations of the
origin of the dHvA effect below B,2, since most theories
[16-19] find that the orbital Landau level spacing is
modified to become (E„+6)'/. Assuming a mass m*
of 2. 1 free electron masses and a field of 18 T, hto, is

1.59&10 J. From the observed dHvA frequency we

see using the semiclassical approximation that near 18 T
the fourteenth Landau level is the one contributing to the
dHvA effect in V3Si. Assuming that 2LL/kT, is about 4.2,
then h, is 1.19x10 J. At the lowest field shown in Fig.
I, d is about 56/0 of its zero field value. Using the
(E2+5 ) '/2 formula for the energy scale implies a fre-

quency shift there of about 3.5% between normal and su-

perconducting phases, reducing for higher fields to zero
shift at B,2. Since the two observed frequencies are in-

variant on a scale of 0.3%, we conclude that a theory is

needed that includes effects both beyond the semiclassical
approximation and taking into account vortex-order pa-
rameter nonlinearities. Such theories are being actively
pursued by a number of groups.

The data of Fig. I and the analysis of Table I suggest
that the frequencies in the two regimes are almost invari-

ant. However, there is a significant change in the dHvA
oscillation amplitude. Close examination of Fig. 1 sug-

gests that the oscillation amplitude below B,2 is about
one-fourth of that above, and that this one-fourth factor
is itself nearly invariant with field over the observed re-

gime below B,2. Initially, these facts were quite puzzling

to us, since the superconducting order parameter must be

rapidly varying close to B,2

To understand these data we have applied the theory of
the mixed phase as developed originally by Abrikosov

[20] and most recently in several papers of Brandt and
co-workers [21]. Mostly this latter work focused on

determining the effective distribution of fields in the
mixed state, so as to make comparisons with NMR and
muon-spin-resonance experiments. In the case of V3Si at
low temperature and for a field close to 8,2 applied along

a high symmetry axis, the field distribution can be ob-

tained fairly simply. We express the field as p= 100/B

N(p) =„A(r)cos(rp)dr, (2)

fO fO

(M, ) = dpM, A(r)cos(pr)dr . (4)

The p integral in Eq. (4) has a closed form. What we see
then is that the measured amplitude [the left-hand side of
Eq. (4)] is given as a convolution of the density distribu-
tion function A(r) and a function with simple poles in

the complex plane. Hence, it is possible to invert Eq. (4)
[231.

This means that, within LK theory, the measurement
of dHvA amplitudes above and below 8,2 can be used to
determine the form of the field distribution density. That
is, the phase smearing of dHvA amplitudes by the inho-
mogeneous field in the mixed phase of type-II supercon-
ductors can be used to determine the field inhomogeneity.
Since this inversion procedure devolves into taking a nu-

merical inverse Laplace transform of data in the general
case, and this can be ill conditioned, we have made only a
modest development of N(p) here. In particular, we have
assumed a shape for N(p) similar to that given by
Brandt's numerical solution of the GL equations [21],us-

ing measured values of the coherence length and GL pa-
rameter %', but we have added parameters for the max-
imum and minimum fields. These were then used to cal-
culate a LK M, the third numerical derivative was taken,

where ~ is the Fourier development of p. Such expan-
sions are familiar from the moment-singularity method
for electronic density of states developed by Lax and oth-
ers in the mid-1950s [22]. The upshot of that work was

that any density of states can be characterized by its crit-
ical structure or by its moment expansions.

For simplicity we will make here a reasonableness ar-
gument; however, all of the numerical results discussed
below actually used full expressions, numerical third
derivatives, etc. Instead, let us expand the sinh function
of the LK amplitude as an exponential, ignore all field

dependence of the dHvA amplitude except for the
sinusoidal variation, ignore both the Onsager phase and
the min/max LK phase parameter, and not take the third
derivative of the magnetization with respect to field [15].
The rth dHvA harmonic oscillatory magnetization in the
normal phase above B,2 is then given by

M, =CT sin [2nr (Fp )]exp [ —arm *(T+ Tp )p], (3)

where we have used p =100/B. (Note that in all we use

only the positive half of the p space. ) By averaging M,
over the distribution function of Eq. (2), we obtain the
amplitude in the superconducting phase:
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TABLE II. Parameters for the field distribution density in

V3Si at H 17.5 T (yi -20, 1,-190nm).
dHvA oscillations in the mixed state of 2H-NbSe2.

Lowest field (T) Highest field (T)

Brandt (Ref. [21])
This work

17.23
17.25 w 0.01

17.61
17.59 w 0.01

and this result was compared in a least-squares sense with
the measured dHvA signal. The resulting fields were
nearly identical with those predicted by the GL equa-
tions. These results are summarized in Table II.

Using these results, we obtain an answer to the ampli-
tude question raised earlier. Below 8,2 the form of the
distribution function we have used is nearly invariant over
the field range used in these experiments. Hence, we see
that this distribution function moves with the average
field, but that its width over the same region is roughly
fixed. Using the idea of phase smearing, this implies that
the dHvA amplitudes are diminished by a constant Din-

gle temperature [15,16]. Hence, the observed dHvA am-

plitude is diminished by a roughly constant factor, as ob-
served here for V3Si, and as was observed also in the
2H NbSez ex-periments of GR [10].

In summary, we have observed dHvA oscillations
above and below 8,2 in the isotropic, fully three-
dimensional 215 material V3Si. We find no statistically
significant change in dHvA frequency in the normal and
mixed superconducting states, in contrast to the only oth-
er such measurement [10]. Finally, our analysis explains
the approximately constant amplitude-reduction factor
that is observed when going from above to below 8,2, and
our experiments demonstrate that it is possible to use
quantum oscillation measurements for direct determina-
tions of the field probability density of superconductors in

external fields B & B,2.
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