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Universal Crossover in Variable Range Hopping with Coulomb Interactions
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Using dimensional analysis, we show that the variable-range-hopping resistivity p of disordered sys-
tems with Coulomb interactions obeys the scaling form lu(p/pp) =Af(T/T„), where f(x) is a universal
function and A and T„are sample-dependent constants. A simple heuristic calculation in three dimen-
sions yields an explicit form for f(x), which exhibits a smooth crossover from the Mott (f~ x 't ) to
the Efros-Shklovskii (fcoax 't2) behaviors. Data on five diA'erent samples of compensated n type -CdSe
are shown to collapse onto this single function.

PACS numbers: 72.20.-i
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The variable-range-hopping (VRH) resistivity of
three-dimensional disordered systems was shown by Mott
[1,2] to behave as Inptx:(Tp/T)'/. Later, Efros and
Shklovskii (ES) [3,41 argued that Coulomb interactions
create a gap that leads to lnp CL (Tp/T) '/ at low temper-
atures. Recently, some of us reported [5] the observation
of a crossover with decreasing temperature from the Mott
to the ES behavior in insulating n-type CdSe. In the
present Letter we discuss this crossover quantitatively.
We show that the resistivity data generally obey the scal-
ing form

ln(p/pp) Af (T/ T„),
where the scale factors A and T, depend on the individu-

al sample properties, but the function f(x) is universal.
The function f has the limiting behaviors

transport with Coulomb interactions.
We first give a general argument as to why a scaling of

the form (1) might be expected. Both Mott and ES find

that Inpcc Rh/g, where Rh is the hopping distance and (
is the localization length. Mott finds Rp/g cx: (Tp/T) '/,
and ES find Rp/( tx: (Tp/T) '/, with proportionality con-
stants of order unity. Further, ES argue that hops which

take advantage of the Coulomb energy may occur only
for RP&&RP. Since both RP and RP depend on T,
the equation RP =RP identifies the crossover tempera
ture [6] T tx: (Tp) /Tp. Since we expect the Mott behav-
ior for T)& T, and the ES behavior for T « T„, it is natu-

ral to expect that both RI, and 1np depend on T only

through the scaled variable T/T„, as in Eq. (1). Assum-

ing further the asymptotic forms of Eq. (2), we also iden-

tify A tx: (Tp/Tp) ' '.
We next explain the derivation of Eq. (3). Both the

yielding the Mott and ES limits. Using data taken from
Ref. [5], the resistance is plotted as a function of temper-
ature in Fig. 1 for five samples of compensated n-type
CdSe containing the different net In concentrations listed
in Table I. Figure 2 shows the same data scaled by the
factors A and T„ listed in Table I. Note that di6'erent

samples cover different ranges on the graph and all the
data collapse onto a single universal curve, as predicted
by Eq. (1).

In the second part of this Letter, we present a simple
heuristic calculation which yields an explicit form for the
crossover function,

f(x) = 1+[(1+x) '"—1]/x
(I+x) '/2 —1] '/2

3z io-.

0

'I
X ~

X

X

~00~0~
%g ~

0

XX XX "XXX
XX+a~ X

++I +++ a
+

O. I
1

O. I IO

TEMPERATURE {K)

0-

~ o 5
lO—

2IO—

Z'. a

I—
CO I— +~~;- .
(f)
LLI

0 0

4

too

The function f(x) is given by the full line in Fig. '2. The
excellent fit to the data for five different n-type CdSe
samples leads us to believe that Eq. (3) captures the
essential physics of this complicated crossover to hopping

FIG. 1. Resistance vs temperature plotted on a double loga-
rithmic scale for five insulating compensated n-type CdSe sam-

ples with net dopant concentrations listed in Table I. The data
are taken from Ref. [51.
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TABLE I. Sample designation, net dopant concentration N, and parameters A, T„TO, and To obtained from nonlinear fits of the

data of Ref. [5] by Eqs. (1) and (3). Also listed for comparison are (Tp) r and (Tp) i estimated in the earlier studies [5]. The critical

concentration for the metal-insulator transition is approximately 3 x10' cm

Sample /V' (]Qi7 cm 3)

2.65
2.40
2.25
2.20
2.18

A

4.85 W 0.35
3.92 w 0.20
7.08+ 0.77
7.30+ 0.21
8.03 ~ 0.24

T, (10 3K)

0.71+0.14
5.5 + 0.7
6.7 + 0.6
9.0+ 0.6

18.1 ~ 1.4

Tp (K)

0.40 ~ 0.14
1.30 ~ 0.3
17.0 ~ 7.5
25.5+ 3.4
75.0 w 10.5

Tp (K)

0.076 ~ 0.02
0.38 w 0.06
1 ~ 50+' 0.35
2.15 ~ 0.20
5.25 w 0.50

(To)' (K)

0.65
3.8

29.0
51.0

160.0

(To)' (K)

0.10
0.37
1.6
2.0
5.8

Mott and the ES results can be obtained by optimizing
the exponential in the hopping probability

y;i yn exp( 2r—;I/g e;1/k T—) (4)

for an electron to hop a distance r;1 between localized
states with an energy difference e;J. Apart from prefac-
tors a; of order unity [7], Mott's result follows if one as-
sumes that ez ai/grj. , where g is the constant density of
states at the Fermi energy. The ES result is reproduced
if one replaces ej by a2e /xrj, where e is the electronic
charge and x is the dielectric constant. Although the
latter derivation has no rigorous justification, and al-
though there exist alternative ways to derive the former
result [7], we emphasize that these two expressions for e;J.

basically follow from dimensional analysis: 1/gr, j3 and
e /xrj are the only relevant energy scales for the two
limits. Since energies are additive, we next combine the
two energies into

e,j at/gr J+a2e /xr;J ..3 2 (5)
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FIG. 2. [ln(p/pp)]/A vs ln(T/T, ) for five samples of n type-

CdSe with different net indium dopant concentrations and
different parameters A and T . The values of A and T„, listed
in Table I, are determined by fitting the data of Ref. [5l for
each sample by Eqs. (I) and (3). The solid line is the function
f(x) of Eq. (3). Note the deviations of the data from the col-
lapsed curve at the higher temperatures due to direct thermal
activation.

This form is indeed dominated by ai/gr13 for small rj and
by a2e /xr;J. for large r;i, as required [3,41.

Substituting Eq. (5) into Eq. (4), it is now straightfor-
ward to maximize y;J and find the optimal hopping dis-
tance

(Rs/g) (a2e gg /6aix) [(1+T/T„) ' —1], (6)

with kT„a2e g(/24aix . Substitution into Eqs. (4)
and (5), and identification of 1/p with the optimal y then
yields Eq. (1), with A —,'(6iral/a2e gg )'/. It is easy
to check that f(x) =x ' [1+3/2x '/ +O(1/x)] for
x » 1 and f(x) = 3(2x) ' [1+x/24+0(x )] for x
«1. Hence Tp A T 2048ai/27' and Tn =9A
~r T„/2 8a2e /x'(. Although ai and a2 may vary among
different theories, Tn and Tp can be uniquely identified
fromm and T .

Values of A, T„, and pn were deduced for each sample
from nonlinear least-squares fits of the data by Eqs. (1)
and (3). The parameters A and T, are listed in Table I,
as well as values calculated for To A T, and Tn

9A T /2. The corresponding parameters labeled (Tp)
and (Tn)r estimated in earlier work are also listed in the
table. We note that A and T, can be determined much
more reliably from experiment than (Tp) and (Tp):
%hile the former are found from nonlinear fits to all the
available data points (excluding only a few at high tem-
perature, where thermal excitation to the conduction
band begins to dominate, see below), the latter must use
subjective subsets of the data where the asymptotic forms
(Tp/T)'/ or (Tn/T)'/ seem to hold. Thus, fits by Eqs.
(1) and (3) for sample 4 using data up to 11 K or up to 6
K yield values for Tp which agree within 2!o, thus provid-
ing a rather robust result, in contrast to the earlier deter-
mination of T( which was rather sensitive to the boun-
daries of the temperature range used in the fit.

The correction terms for small and large x indicate a
much slower deviation from the x ' behavior as x in-
creases than from x ' in the opposite limit. One thus
expects to observe the ES behavior even for x ~ 1, but the
Mott behavior should appear only for very large x.
Indeed, Fig. 3 indicates that f(x) is within 10% of the
asymptotic behavior 3/(2x)' (or 1/x' ) for x &4 (or
x & 200). Thus, the actual crossover occurs gradually for
temperatures between 4T„and 200T, with a stronger

3901



VOLUME 68, NUMBER 26 PH YSICAL REVIEW LETTERS 29 JUNE 1992

10 10 10 103 2
10

0 8.—

X

0.4

'0 0.2
-1 /4

0.4 0.6

10 10 10

0
0 0.5 1.5

FIG. 3. The function f(x) vs (a) x 't4 and (b) x 't2. The
dashed lines denote the asymptotic behavior at high and low x,
respectively. Note that f(x) is within 10% of the asymptotic
behavior x '~ for x & 200, so that true asymptotic behavior is
reached only for very large T. Although the opposite limit at
low T is also approached very slowly, the slope is close to its
limiting value, 3/2'~, over a wide range of x.

variation near the higher bound. This is indeed con-
firmed by the data of Fig. l. In practice, this means that
one rarely achieves the true asymptotic behavior for high
T. Indeed, although our new fits roughly confirm the pre-
viously estimated [5] values of To, we now find sig-
nificantly smaller values for To. The previous estimates
showed an apparently larger slope of lnp vs T 'I be-
cause of the correction (of relative order 3/2x 'I ) as x de-
creased, as well as because of the sharp decrease of p due
to direct thermal excitation for very large x. Although
the latter effect is not included in our theory, it is easy to
identify the data points in Fig. 2 at which it becomes
relevant by their significant deviation from the data col-
lapsed curve.

A crossover with decreasing temperature from Mott to
ES variable range hopping has been reported in the doped
semiconductor CdTe:Cl [8], where the data appear to be
similar to CdSe:In. Crossover behavior has also been
claimed by Glukhov, Fogel, and Shablo [9] in the granu-

lar systems Sn:Ge and Ag:Ge, for which the model pro-
posed does not appear to provide a good fit. As noted by
Adkins [10], however, the behavior of the conductivity of
these cermets is qualitatively but not quantitatively con-
sistent with ES hopping due to a Coulomb gap. %e em-
phasize that our analysis applies only to simple hopping
over an energy barrier, and this may not be the case for
the cermets. Alternative models have been proposed, in-
volving, for example, the Coulomb charging energy re-
quired to transfer electrons between metal islands, and
there is currently no generally accepted explanation for
the conductivity of these granular metals [10].

We note again that our dimensional analysis does not
depend on any details of the many-body Coulomb system.
Our results could also be obtained by optimizing Eq. (4)
with respect to atj instead of r;J, using r;J cc I/(ge;J. ) ' and
replacing g(e) by a smooth function which crosses over
from behaving as a (for small e) to a constant (for large
e), as implied in Refs. [3,4]. Alternatively, one could use
a percolation model in the four-dimensional r Espace—
[71, with one-particle excitations which obey the ES con-
straint a —a2e /x'r & 0. We expect all these calculations
to yield crossover functions very similar to our Eq. (3).
In any case, we hope that the remarkably good fit shown
in Fig. 2 will stimulate both experimentalists to try fitting
Eq. (3) to other systems (including those that seem to be
in the asymptotic Mott regime) and theorists to search
for more rigorous derivations.
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