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The behavior of many-electron wave functions near points where the positions of some of the electrons
coincide or where they coincide with positions of nuclei is investigated. A representation theorem for
many-electron functions near such points is given extending previous results of Kato (cusp conditions)
and Hoffmann-Ostenhof and Seiler. Furthermore, the influence of the Pauli principle on the local be-
havior of fermionic wave functions near many-particle coalescence points is studied.

PACS numbers: 31.10.+z, 02.30.+g, 03.65.Ge

We present here mathematically rigorous results on the
behavior of many-electron wave functions at many-
particle coalescence points; details of our proofs will ap-
pear elsewhere.

Let 0 be the nonrelativistic Hamiltonian of an 1V-

electron atom or molecule with fixed nuclei in suitable
units,

N

H —g h;+V(rt, r2, . . . , rtv),

where in the case of K nuclei with positions X„
a I, . . . , K, and charges Z„

JC N z Nv- —g g ' +g (2).-t;-t ~r;
—X.~;(, ~r;

—r,. ~

'

We consider real-valued solutions tit [I] to the corre-
sponding Schrodinger equation Htif Etit (E is the ener-

gy) in the neighborhood of a many-particle coalescence
point (CP). Let G g;&J)r; —r1(g;,,(r; —X,). A point
xcp (ri, . . . , rtv) & R is called a coalescence point if
G(xcp) 0, that is to say, if some of the interelectronic
or the electron-nuclear distances are zero. Here the r;
are the positions of the electrons; spin will only enter via
permutation symmetry of y(rt, . . . , rtv).

How does a many-electron wave function behave near
such CP's? Since the potential is not defined at CP's, y
will be nonanalytic there. The nature of this nonanalyti-
city is determined to a certain extent by the singularity of
the potential. For two-particle CP's there are well-known
results by Kato [2] which have found numerical applica-
tions [3], and for many-particle CP's see [4,5]. In [2]
and [4] the local behavior of the suitable averaged wave
function near a CP is described. These results are only
nontrivial for the case where the considered wave func-
tion does not vanish at this CP. Without this restriction
we give here a representation result for the wave function
itself near a many-particle CP. (For a formal discussion
in the case of two-particle CP's, see [6].)

Also the fermionic nature of many-electron systems
influences the behavior of many-electron wave functions
near CP's. At m-electron CP's (rn ~ 3) an electronic
wave function must vanish, but, and this will be made
precise in Theorem 2, we will state how fast at least it
must vanish.

Before we can state our results we have to introduce
some notation. Let d 3N and x =(xt, . . . ,xd)

(rt, . . . , rtv) 6 R and d g;-~h;, so that the
Schrodinger equation reads

[—6+ V(x)]Vt EVt. (3)
We introduce harmonic homogeneous polynomials

psst(x&, x2, . . . ,x~) of degree M. This means that
0 and psst(gx) Xpse(x) for A, E R'. We intro-

duce d-dimensional polar coordinates x rca, where

)x[ and ca «/~x[ E S~ ', with S~ ' the unit sphere
in R . In these coordinates P~ can be written as

Pss(rta) -r Y~(ta), (4)
where Yst(ta) is a surface harmonic or "hyperspherical
harmonic" [7,8], the d-dimensional generalization of the
usual spherical harmonics. The Laplace operator in polar
coordinates reads

t) +d —1 tl L
t)t 2 r 8r

where L is the Laplace Belt—rami operator on S ' (in
three dimensions it would be angular momentum). A
surface harmonic Y~ satisfies

(5)

L Yse M(M+ d —2) Yst . (6)

V E~ W/r+U, — (7)

Now suppose that tie(xt, . . . , xd) satisfies (3) with V
given by (2) in the neighborhood of a CP. We translate
xgp into the origin, that is to say, r; r; —r; . Obviously
we can split V given by (2) in these new coordinates [still
denoted by (xt, . . . , xe)] in a unique way so that
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)((cp =PM [I+aMr+O(r )j+r((no),

with

fYMWdko

2M+d —
1 fY2 dko

and

O(„M+ ()

(9)

(io)

Here dm means surface measure on S" ', and 0 denotes
the usual order relation.

There is an immediate consequence of (9)-(11)which

relates to the "cusp conditions" in Refs. [2,4,5] (which
are nontrivial only if M 0).

Corollary. —Let ((fat„(r) r ™(f(((pp dko) '( . Then

d M) (0) M) (0) (i2)

To see this we first note that by Theorem 1,

(((Ppdko =r YM dko[l+2aMr+O(r )]+O(r + ) .

This implies y~(„)(r) =(fYM dko) '( [I+aMr+O(r )]
from which (12) follows immediately.

Some remarks and explications might be appropriate.
(i) Theorem 1 holds true in an appropriate formulation
for general Coulombic systems, hence with moving nuclei.
(ii) We also want to emphasize that the splitting of (((cp

into YMf (((cp YM dko and r( is natural since aM is uniquely
determined by PM whereas r( is not. (iii) In general PM

in Theorem 1 is not known and, as the hydrogen atom
shows, M can be any non-negative integer. If P~ is

known then a~ can be calculated in principle; e.g., for the

ground state of orthohelium it is known that ]hei behaves
near the nucleus like Pz=ir(( —ir2i [91. (iv) Let us

consider the relation of our results on the local behavior
of a wave function to those using Fock expansions. We

where U is bounded in a sufficiently small d-dimensional
ball centered at the origin. 8' is homogeneous of degree
zero so that W =W(ko).

We can now formulate our representation result for
real-valued solutions pep of

( —6+ W/r + U) (((Cp =0

in the neighborhood of the origin.
Theorem 1.—Let yt-p~O be a real-valued solution to

(8) in the neighborhood of the origin. Then there exists a
harmonic homogeneous polynomial PM =r YM~0 of de-
gree M such that the behavior of pep for r 0 is deter-
mined by this PM in the following way: Writing ycp as

(((cp(no) = YM(ko) I ~,ycp(no) YM(ko)dko+ r((no)

(so obviously, f!((cpr(dko =0), then, for r 0,

mention here only a few important more recent results
[9-12]. There one tries to expand the wave function near
a CP in terms of powers of r and Inr (where the
coefficients are functions of ko), and according to these in-

vestigations the first nonvanishing term where logarithms
show up is of order r + ilnri. Clearly such a series has

to satisfy (9)-(11) of Theorem 1 [in particular it must

have the property (12)], and the first logarithmic term is

contained in r(. (v) The potential in (2) depends only on

interparticle distances implying that W(ko) W( —ko) in

(8). Without this symmetry property Theorem 1 would

not be true. For example, take d=3 and V=x((xl
+x 2 +x3 ) '. Then we can show that a local solu-

tion y of Ay Vy behaves in general like y =P~
+O(r +'ilnri) for some PM~0 in the neighborhood of
the origin. (vi) If xcp is not a CP then in (8) W—=0 and

hence aM=0 in Theorem 1. But (9) and (11) remain

valid. In fact two of us [13] recently proved a representa-

tion result like Theorem l for rather general potentials.
The present result is a considerable strengthening of these

findings for the Coulombic case.
Sketch of proof The p.

—roof of Theorem 1 is based on

results derived in Ref. [13]. The relevant result for our

purposes reads as follows for the Coulombic case: If lp'cp

does not vanish faster than polynomially, then for some

P~ =r Y~~0

YCP PM +!I)

O(r + ) for r 0 for any 0(b(1.
(i 3)

L Y( =l(l+d —2)Y(, (i4)

Without loss of generality we assume Y~ Y~ o. Fur-

ther, we represent pep by

M+ i h(l) —i

(((cp(rko) = Z Z y(, (r) Y(, '(ko)+ p(rko), (15)
l~o m 0

with

and

(((,m (i) &~, !(C YIP, dm~ (i 6)

„pYI de 0 for O~ I ~M+1.
We investigate the terms in (15) separately: Multiplica-

That y does not vanish faster than polynomially at
CP's is a consequence of the strong unique continuation

property [14] of the Schrodinger operator given in (3)
[i5].

Now let [Y(m] denote the set of orthonormal real-
valued hyperspherical harmonics on S ', where l

0, 1,2, . . . and 0 ~ m (h(l) —1, with

(2l+d —2)(l+d —3)!
(d —2)!I!

and [compare (6)]
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tion of Eq. (8) from the left by Yt and integration over
S ' leads, taking (13) into account, to

d —1, I(l+d —2)
Pl, m Pl, m +

2 Pl, mr r

O( M+I) (20)

To obtain (20) for l M+1, W(to)-fV( —to) is essen-

tial.
Now assume for the moment that

YS~ ' lm +U (P4t+P)dto. (18)
p(re) -O(r~+'),

then we obtain, by inserting (20) and (21) into (15),

(21)

Using ordinary difl'erential equation techniques it can be
easily shown that for r 0

@sr,o r [1+assr+0(r '+ )] [a~ given by (10)], (19)

whereas for the other cases with l (M+ 1,

pep - ittst, DYE+ rt(r~),

with rt satisfying (11). Further by (19) we get

ittcp r Yst [1+assr+ O(r '+4) ]+rt.
t But as a result of (18), by variation of constants,

(22)

(23)

+U(sto) ycp(sto)dtods dt
S

(24)

so that (23) and (24) finally lead to

yet o r [I+assr+0(r )],
which together with (22) verifies (9).

Hence it remains to show the validity of (21): Let
Qst+i denote the orthogonal projection of Lz(Ss ') onto
the linear span of [Yt .'l &M+I, 0(m(h(l) —lt,
then clearly Q~+1 pep p and hp Qst+i(Vip). Since
in the quadratic form sense Qst+ ~L QM+1 ~ M(M
+d)Qsr+1 it can be shown that f(r) U [p(r )to] d2]to'J z

satisfies for small r the differential inequality

d —1~+ M(M+d) f( tx st ]
2

This implies (via standard comparison techniques) that
f(r) O(r +'). But p satisfies an inhomogeneous equa-
tion so we can use a mean value inequality due to Hinz
and Kalf [16] suitably adopted for our purposes (see Ref.
[13]) to obtain from the L estimate for p (namely, the
estimate for f), a pointwise estimate for p proving (21).
Thereby the actual Coulombic nature of the potential
plays an essential role.

We now discuss the influence of the Pauli principle on

the behavior of many-electron wave functions near
many-electron CP's. In nonrelativistic quantum mechan-
ics spin can be accounted for entirely by requiring that an
N-electron wave function y(rl, r2, . . . , r~) transforms ac-
cording to specific irreducible representations of the sym-

metric group S' . From Theorem 1 we have near an N-
electron CP, xcp, which we take without loss to be the
origin, that

y(rl, . . . , rtv) -Pst(r), . . . , rN)+O(txt +') . (25)

Now if y transforms according to some irreducible repre-
sentation of S', P~ must show the same transformation
properties [17].

Let us first discuss the case where the total spin
s N/2, so that both y and Pst in (25) must be antisym-

metric with respect to interchange of any pair (r;, rJ).
We want to determine the smallest possible M such that
a harmonic homogeneous polynomial Pst(r~, . . . , rtv )~0
exists, satisfying this requirement. This can be done fair-

ly easily using Cartesian coordinates; with hyperspherical
coordinates this might turn out to be tedious [8,18].

We indicate the construction of such a minimal PJs.
Let for given y;(r;), i 1, . . . , N, plv be the correspond-
ing Slater determinant; hence

N

ew(rl, . . . , rtv) -& H &i(ri), (26)

where A is the usual antisymmetrizer [19].
Let r; (x;,y;,z;). We pick for the e;(x;,y;,z;) mono-

mials in increasing order, so that y;(r;) for i 1,2, . . . , N
becomes 1, x2,y3, z4, xf,y6, zy, xsys, , xi i,y iz,
we have one monomial of degree 0, three of degree 1, six
of degree 2, etc., or n —,

' (m+1)(m+2) of degree m.
We claim that with this choice (important is that no mo-
nomial is missing) &st is indeed harmonic and has
minimal degree. To see this we note that

N N N

& Z &Jv J(rJ)/v;(r;) .
i 1 j 1 i~j

Here we used the fact that 6 (symmetric in the particle
coordinates) commutes with A as well as the linearity of
A. But hjpj is a linear combination of monomials which
already occur among the other pj. by our construction, so
~IN =0.

Using (28) it is not difficult to determine the degree
g(N) of the polynomial pN and some of its properties.
We summarize our findings.

Proposition l.—
g(N) g k(k+ l)(k+2)(k+3)+P(N)(k+1), (28)

where k [a], the largest integer (a, and where a is the
unique positive root of the cubic equation
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(a+ I)(a+2)(a+3) =6N made. For v-dimensional particles, g„(N) —N "+' t".

and

P(N) =N ——,
' (k+1)(k+2)(k+3) .

Further, for any two integers N ~ and N2,

(30)

g(Nt+Nz) ~ g(Nt)+g(Nz) ~ 2g([(N)+N2)/2]) .

(31)

For large N, g(N) satisfies

g(N) s (6N) —
2 N+ 2'4 (6N) t +O(N' ) . (32)

s (Nz —Nt)/2, N~+Nz=N, Nz& Nt ~0. (33)

From the representation theory of the symmetric group
[19] it is straightforward to show the following gen-

eralization of proposition 1.
Theorem 2.—Suppose we have an N-electron wave

function satisfying (25) with total spin s. Then
tlt(rt, . . . , rN) must vanish at an N-electron CP at least
like

M(N, s) g(N/2+s)+g(N/2 —s) .

Furthermore, denoting Mo(N):= min, M(N, s),

(34)

2g(N/2), N even,

g(N/2+ —,
' )+g(N/2 ——,

' ), N odd,

and for N

Ma(N) 4 (3N) —
2 N+ i'i (3N) +O(N' ) . (36)

Some remarks might be appropriate. (i) At m-electron
CP's, m & N, tlr(rt, . . . , rtv) must vanish at least of order
Mo(m). (ii) M(N, s) is minimal for s=0 or —, , a conse-
quence of (32). So for ground states of atoms where s
can be larger than —,', Mn(N) will be a lower bound to
the order of vanishing at ¹ lectron CP's. But for other
systems M(1V,s) is indeed achieved (e.g., harmonic oscil-
lator). (iii) The N behavior looks a bit like Thomas-
Fermi theory though no energy considerations were

The functions p~, . . . , tatv are ordered in "blocks" of
different monomials with the same degree m. A block is

complete if it has length n Fu.rther, k in (28) is the de-

gree of the polynomials in the highest closed block. p(N)
is the number of monomials of degree k+1 which do
not form a complete block. Obviously, 0 ~ p(1V) & & (k
+2)(k+3). If p&0, there are ( 'tt') equivalent PM's.

(31) follows easily from the construction and the asymp-
totics of g(N) follow from (28)-(30).

Let us now consider the general case; hence we consid-
er an N-electron function tit(r~, . . . , rN) that satisfies
(25) with given spin s. Let Nt and N2 be integers such
that
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