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Effect of a Nonuniform Magnetic Field on a Two-Dimensional Electron Gas in the Ballistic Regime
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The single-particle electronic structure of a two-dimensional electron gas in a nonuniform magnetic
field B consists of states that propagate perpendicularly to the field gradient VB and have a remarkable
time-reversal asymmetry. In one of the allowed directions the propagation has free-electron character
and is confined to a narrow one-dimensional channel localized about the region where |B| is minimum.
In the opposite direction, the Landau states propagate throughout the rest of the sample with a velocity

proportional to [VB|'>.

PACS numbers: 72.15.Gd, 72.20.My, 73.20.Dx

The electrical behavior of a two-dimensional electron
gas (2DEG) subjected to a uniform magnetic field has
been studied recently in much detail [1,2]. In the ballis-
tic regime, the system is characterized by stationary Lan-
dau states, which do not propagate and yield no contribu-
tion to its conductance. The charge flow observed in
finite samples was shown to be due to edge states local-
ized at the boundary of the 2DEG [3]. This Letter
discusses the situation in which the magnetic field in the
interior of the sample is not uniform. In this case the
Landau states are no longer stationary but propagate per-
pendicularly to the field gradient and exhibit a remark-
able time-reversal asymmetry. In one of the allowed
directions the propagation has free-electron character,
and it is confined to a narrow one-dimensional region lo-
calized near the line where the magnitude of the magnet-
ic field is minimum. In the opposite direction the Landau
states propagate throughout the rest of the sample with a
velocity which depends on the field gradient.

The asymmetric propagation of electrons in a nonuni-
form magnetic field can be understood by the following
classical argument illustrated in Fig. 1. Consider a
2DEG constrained by rigid walls to —L/2<y<L/2,
but infinite along the x axis, and subjected to a magnetic
field with a component perpendicular to the x-y plane,
given by

B(y)=B,y, o))

such that it changes sign at the line y=0 [4]. The trajec-
tory of a classical electron moving in the plane has an in-
stantaneous radius of curvature given by r =cp/eB, where
p is the momentum of the electron, and B the local mag-
nitude of the magnetic field [5]. This means that the part
of the trajectory that scans larger (smaller) values of the
magnetic field will have a smaller (larger) radius, giving
rise to an open orbit that drifts perpendicularly to the
field gradient, as illustrated by the drift (d) trajectories in
Fig. 1. For the case of a sufficiently small field gradient,
VB =By, a straightforward classical calculation shows
that the magnitude of the drift velocity is given by [5]

v=er’B/2mc . ()

Near the boundaries of the sample, collisions against the
rigid walls force the electrons into skipping orbits as illus-
trated by the edge (e) trajectories in Fig. 1, which propa-
gate in the same direction as the d trajectories. On the
other hand, in the region where B=0 the electrons scan
magnetic fields with alternating positive and negative
signs, giving rise to the s trajectory, that propagates in a
direction opposite to that of the e and d trajectories.

The confinement of the electron trajectories in a mag-
netic field is actually a purely quantum-mechanical effect,
for in a classical description the radius of the electron or-
bits assumes a continuous sequence of values and can be
arbitrarily large. For an electron in a uniform magnetic
field B =By, the quantum-mechanical treatment is well
known [6]. The solutions of the Schrodinger equation are
Landau states, labeled by one of the components of the
momentum (say p,), and by a magnetic quantum number
n. The corresponding wave functions have a spatial ex-
tension perpendicular to X given by

Ayn=[(n+ ¥ )hcleBol'?, 3)

and for a given n, they have all the same shape independ-
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FIG. 1. Classical picture of the electron trajectories in a
two-dimensional system constrained by rigid walls at y =+ L/2
but infinite along the x axis. The magnetic field B =B,y is nor-
mal to the plane with a field gradient VB =By, as shown in the
picture. Trajectories d and e drift in the direction +X while
trajectory s, confined about the line where B=0, propagates in
the direction —x.
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ent of the momentum p,, but are displaced with respect
to one another in such a way that their centers are given
by yo=cp./eBo. This condition ensures that their veloci-
ty is o, =(1/m)(p, —eBgyo/c) =0, i.e., that the Landau
states do not propagate. The momentum p, keeps track
of the orthogonality of the Landau states, but it has no
effect on their energy, which is given by

E,=(n+ $)ehBo/mc. (4)

Equation (4) means that a two-dimensional electron gas
in a uniform magnetic field is highly degenerate. In a
finite geometry the Landau states with sufficiently large
Py to be close to the boundary of the sample also have a
larger energy, giving rise to a finite dispersion £, (p,) and
thus a velocity v, =dE/dp,#=0. These edge states can
therefore contribute to charge flow [3].

The magnetic field enters in the Schrodinger equation
as an additional momentum proportional to the vector po-
tential. For the system of Fig. 1 the vector potential can
be conveniently written as A= — %B.y 2%, from which
the magnetic field (1) can be deduced using B-
= —09A,/dy. The Hamiltonian of the system is given by

=1 3

2m

LTINS
P 2m
where py,p, are the components of the momentum. In
the present work, the energy related to the spin degrees of
freedom will be neglected, and that associated with the
motion perpendicular to the x-y plane will be assumed to
be a constant [4]. Electron-electron interactions and im-
purity scattering will not be considered, but boundary
scattering will be explicitly included in the solution of the
Schrodinger equation through the boundary conditions
for the wave function. The electric charge of the electron
is given by —e. Since [p,,H] =0 we can write the wave
function in the form y=y(k,,y)exp(ik.x), where
k.=p./h, and y(k,,y) is a solution of the equation

+ (5)

2"+ Cm/ADIE —V(ky)]y=0. (6)
The effective potential
B .|’
Vikoy)=—— |hk, — 2202 o)
2m 2¢c

incorporating the effect of the magnetic field, is illustrat-
ed in Fig. 2. Note the asymmetric dependence of
V(ky,y) on k.. The effective potential consists of a dou-
ble well for k, > 0, and of a single well shifted upwards in
energy by (Ak,)%/2m for k. <0. It is a symmetric func-
tion of y, with the single well centered at y =0, the mini-
ma of the double wells located at

yi==%Qchky/eB))'? (ky>0), (8)

and the value of the potential at the minima given by
V(k,\-,y |) =0.
In the present work, Eq. (6) was solved by expanding
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FIG. 2. Effective potential V' (k..y), characterizing the mag-
netic problem for B=R8,y, with By=1 G/A. It consists of a
double well for A >0, and of a single well shifted upwards in
energy by (hk.)*/2m for k, <0.

the wave function y(k.,y) in terms of oscillator functions
(Hermite polynomials with a Gaussian factor), evaluat-
ing numerically the corresponding matrix elements of
V(k,,y), and diagonalizing the resulting secular problem,
for each k,. In the numerical application the physical
parameters have been chosen to correspond to the 2DEG
in GaAs-AlGaAs heterostructures. The electron mass
was taken to be m =0.067m,, and the electron density
per unit area was assumed to be p, =4x10 "> A 72 The
Fermi vector is given by ky=(4rp,/g,) "> =1.58x10"2
A 7' (here g, =2 is the spin degeneracy), and the Fermi
energy is Ep=(hkr)>/2m=14.3 meV. The configur-
ation of Fig. 1 was chosen to keep the numerical effort to
a minimum. The width of the sample was chosen to be
. =2x10* A, and for the magnetic-field gradient, a value
B, =1 G/A was taken.

The energy bands E, (k,) shown in Fig. 3(a) exhibit a
pronounced asymmetry as a function of k, that reflects
the corresponding asymmetry of V(k,,y). For k, <0 the
effective potential confines the electrons in the region
where the magnetic field is B=0 (see Fig. 2). Accord-
ingly, the energy bands characterizing the motion along
—X are free-electron-like. The band index n labels the
successive excited state of the magnetic problem (6).
Note that for the excited states, the minima of the bands
do not occur at k, =0, but at small positive values of &,
such that for some states the momentum and the velocity
have opposite signs. The reason for this effect is that for
small positive values of k. the effective potential becomes
wider, lowering the energies of the excited states, which
become broader with increasing n.

For k. >0 the double well of the effective potential
V(k.,y) splits the electron wave function [which is
symmetrical (antisymmetrical) about y =0, for n =even
(odd)] into two Landau states located at positions given
by (8). When the wave vector k, becomes sufficiently
large and the Landau states separate completely, symme-
trical and antisymmetrical solutions have the same ener-
gy, and the energy bands become degenerate in pairs.
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FIG. 3. (a) Energy bands E,(k,) for some values of n, and
densities of states N+(E) and N - (E) for electrons with vy >0
and ¢, <0, respectively. (b) Charge densities p+(y) and
p-(p) for electrons with vy >0 and v, <0, respectively. Also
shown is the spectral charge density p(ky,y). The contour lines
represent densities given by 6/x 107*eA " forl=1,..., 10.

Note that in the region v, >0, the energy bands are
flatter than for v, <0, because of the energy lowering in
the magnetic field. The energy bands are well represent-
ed by the expression

h

E,,(k,\-)z(n+§~)—l£B|—h—1-<i
m

12
oy J y>0, )

which follows from (4) using Bo=8B,y,, with y, given by
(8). The dispersion in the energy bands arises because
the Landau states with increasing momentum are pushed
into regions of larger magnetic field [cf. Eq. (8)], and
larger energy. From (9) the velocity of the Landau states
is
1 OE, h
=h TS = )P
9k, |y

which agrees with the classical value (2), if one uses
r?=2(Ay,)? where Ay, is given by Eq. (3) with Bo

(10)

=|yi|B..

The finite drift velocity in the interior of a 2DEG sub-
jected to a magnetic field is due to the transverse energy
dependence of the Landau states, which can also be
achieved by electrostatic means. For instance, the para-
bolic confinement of a 2DEG in a narrow channel leads,
in a uniform magnetic field, to a finite mobility of the
Landau states along the channel with an increased
effective mass [7]. Another situation where a transverse
energy variation of the Landau states takes place was re-
ported by Weiss et al., who studied the combined effect of
a weak periodic potential and a uniform magnetic field on
a 2DEG [8]. The observed dependence of the current
flow parallel to the equipotentials on the strength of the
magnetic field was explained by various authors in terms
of electrons drifting in the interior of the sample [9-12].
However, as long as the electrostatic energy variation
perpendicular to the electron drift is symmetric, the be-
havior of the system under a time-reversal operation is
also symmetric. Recently, Kouwenhoven et al. performed
an experiment where the magnetic field does actually
break the time-reversal symmetry [13]. They studied the
effect of a uniform magnetic field on a 2DEG in a narrow
channel subjected to a potential that was periodic along
the channel, but with an asymmetric lateral confinement.
The resulting electronic structure exhibits skew mini-
bands [2], that resemble those of Fig. 3(a).

When the momentum becomes sufficiently large and
positive that y, =L [cf. Eq. (8)], the steepness of the en-
ergy bands increases abruptly, becoming comparable to
that of the free-electron ones. This part of the spectrum
describes the edge states, well known in the context of the
quantum Hall effect [3]. In addition to the opposite signs
of their velocity, there are two essential differences be-
tween the edge states and the free-electron states that
occur in the interior of the sample. First, the inner states
involve only magnetic scattering. Second, they lie lowest
in energy and are always occupied, while the edge states
can be empty if the magnetic field becomes sufficiently
large that only the band n =0 is below the Fermi level.

The partial densities of states N +(E) and N_(E) for
electrons with vy >0 and v, <0, respectively, are also
shown in Fig. 3(a). In the region where (10) is applic-
able, the contribution of the individual bands to the den-
sity of states is proportional to the energy E, as is ap-
parent in the sawtooth form of N4+(E). On the other
hand, N - (E) is clearly free-electron-like. The total den-
sity of states N(E)=N(E)+N _(E) oscillates about
the average value given by the two-dimensional free-
electron value g,m/27h>=28x10"% A "2meV ~'. Fig-
ure 3(b) shows that the spectral charge density, given by
plky,y) =X, lxn(ky,y)|? (here the sum includes all the
energies below the Fermi), is roughly constant over the
variable range where

V(ky,y) <EF. ()
Also shown in Fig. 3(b) are the charge densities p+(y)
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and p—(y) for electrons with ¢, >0 and v, <0, respec-
tively. Note that p4+ remains confined within a one-
dimensional region of width w=10* A, forming a chan-
nel in which charge flow in the direction — X takes place.
It follows from (7) and (11) that this width depends on
the magnetic field according to w=B""2. The charge
flow in the opposite direction takes place throughout the
rest of the sample, including the edge states. Of course,
the net current in equilibrium is j, = —e fv, (k)dk, =0,
for each band. It is also interesting to point out that the
total electron density p(y)=p4+(y)+p_(y) is uniform
across the sample, i.e., no charging effects take place.

According to the theory put forward by Landauer [14]
and Biittiker [3], the conductance G is proportional to the
number of propagating modes at the Fermi energy, which
for our system is equal to the number of bands with ener-
gies below Ep, given by ny.=(w/n)kg. In the absence
of the magnetic field or for small field values, w =L, i.e.,
the conductance is proportional to the width of the sam-
ple, as expected. With increasing magnetic field w <L,
and the conductance decreases, remaining proportional to
szl_'/z (see above). Another important consequence
of the theory of Landauer and Biittiker is that the con-
ductance is the same in the positive and negative x direc-
tions, because each energy band cuts the Fermi energy in
two points, one with ¢, >0 and another with v, <0. It
may be interesting to test this statement experimentally,
since states moving in the positive and negative directions
have very different velocities and in a nonideal 2DEG will
involve different scattering processes.

The main result of this work is that in the presence of a
nonuniform magnetic-field transport properties become
one dimensional. Charge flow takes place only in the
direction perpendicular to the field gradient with a con-
ductance proportional to |VB|'/2. These results are not
restricted to the geometry of Fig. 1, which was chosen to
simplify the presentation. The present study can be trivi-
ally extended to the case where B(y) =Bo+B,y, repre-
senting a general nonuniform magnetic field. The ef-
fective potential will become an asymmetric function of y,
and all degeneracies in the energy bands will be removed.
The minimum of the energy bands will occur now for a
value of the momentum k, =k <0, even for the mag-
netic ground state, n=0. However, Eqgs. (9) and (10)
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will remain valid with k, referred to k.o, and propagation
in the +X direction will be confined about the line where
B(y) is minimum. Experimentally, such a field could be
generated by covering part of the sample (maybe on both
sides) with a superconducting film before submerging it
in a homogeneous field. Since the superconductor shields
the magnetic field there will be a large field gradient at
the boundary between the covered and uncovered parts.
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