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It is shown that by including both the spin up and spin down components of a spin one-half field, a
parity conserving Chern-Simons theory can be constructed. For a single fermion field the model con-
tains (aside from the mass and a coupling constant) a parameter ¢ which can have the values * 1. It is
shown that only the positive value allows an interpretation in terms of anyons. This result thus serves to
sharpen the frequently overlooked distinction between the Chern-Simons interaction and the anyon.
While the former can be introduced into any (2+ 1)-dimensional field theory, the latter is seen to be a
special limiting case obtained only when relativistic and spin considerations can be ignored.

PACS numbers: 05.30.—d

The introduction [1] of the Chern-Simons term
€uvaA?3°A4" into the QED Lagrangian in 2+ 1 space was
remarkable in that it demonstrated the possibility of hav-
ing a finite photon mass at the free-field level in a gauge
invariant theory. It was subsequently shown [2] that
rather interesting results can be obtained even when the
Chern-Simons term is taken to be the entire gauge field
Lagrangian. In particular such a system lacks an ele-
mentary photon so that the sole effect of the gauge field is
to mediate long-range interactions between charged parti-
cles. It is also fairly straightforward to show [3] that in
the Galilean (or “nonrelativistic”) limit the two-particle
sector of this model is equivalent to the Aharonov-Bohm
effect [4].

Since high-T, superconductivity is widely thought to be
a planar phenomenon, this photonless gauge theory has
been the object of considerable application in that con-
text. There are, however, two commonly accepted views
to be found in such work which require careful scrutiny.
These are as follows: (1) “The presence of a Chern-
Simons term implies that parity P and time reversal 7T are
violated, of course” [5]. One also encounters statements
to the effect that [6] “in T-invariant systems, the only
possible statistics are those corresponding to bosons and
fermions.” (2) Equivalence is assumed between Chern-
Simons and fractional statistics theories (i.e., the “anyon”
[71). In fact the first point (which is trivially true in the
simplest Chern-Simons theory) has motivated a number
[8-10] of experiments designed specifically to detect such
P and T violating effects. The results obtained to date
are, however, inconclusive on this point.

Before proceeding it is important to sharpen the issues
involved in point (1) as detailed above. Applications to
date of fractional statistics to condensed matter systems
implicitly assume the simplest possible formulation of this
theory. That model could indeed be contradicted by ex-
periments such as those described in Refs. [8-10]. On
the other hand, null results for such tests would not ex-
clude parity conserving theories of the type constructed in
this paper. It will also be shown that these latter models
are sometimes compatible with fractional statistics and
sometimes not.

It must also be noted that the possibility of restoring P
and T invariance to Chern-Simons theories has been
mentioned in the literature [1,11]. In fact there is gen-
eral recognition of the fact that the formal device of pari-
ty doubling allows the restoration of parity invariance to
any given theory. This paper enlarges this issue some-
what by carrying out the explicit construction of the most
general Chern-Simons parity invariant theory. This pro-
vides the specific framework necessary to discuss the cru-
cial issue concerning the equivalence or nonequivalence of
Chern-Simons and fractional statistics theories.

To carry out the construction one notes that for a set of
gauge fields ¢/ (i=1,2,...,N) the most general Abelian
Chern-Simons Lagrangian can be taken as

Log =7 ¢*€uvad9%9”,
where A4 is a real symmetric matrix. An orthogonal
transformation can be used to diagonalize 4 while a sub-
sequent rescaling of the fields yields

1
LOg =7 Zsi¢x!‘fyvuaa¢iv s
i
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where s; = * 1. The requirement that Lo be parity in-
variant implies that NV must be even and that the degen-
eracies of s;=+1 and s;=—1 are equal. Thus one
writes

n
=£Og = ;- ‘Zl [¢1”+ fyvaaa¢iv+ - ¢1“* e:;xvaaaQ)iv—-] s (1
-
where the parity transformation of the fields is expressed
by
P¢,Fi(x,l)P-l =¢1‘l¢ (i,t)x {""‘l, #=0,1,

=1, u=2,

and f,’ =(X|, —xz).

For a spin one-half (two component) field of mass M
and spin component s/2 the free Lagrangian can be writ-
ten as

Loy =iyy"d,y —Myy, (2)

where the Dirac matrices can be taken to have the Pauli
form [12]

B=o03, By '=(o1,507). 3)
A theory in which both spin up (s =+1) and spin down
(s=—1) particles are accommodated is then trivially

realized by replacing s in (3) by the third Pauli matrix p;
(where [p;,0;1=0) and a corresponding doubling of the
number of components of y. The parity operation for the
y field is then seen to be

Py(x,0)P " 1=py(x,1),

which is clearly an invariance of the Lagrangian (2).
The most general gauge coupling between the set ¢¥

J

n
«Lint=‘;l (FyuP +yleipls +8i9f-) + WyuP —yleisf +giof4)],

and the spinor field vy is
4)

where the projectors P + onto the spin up and spin down fields are

Pi=§-(lip3).

At this point it is straightforward to establish that since only a single linear combination of the ¢4 and of the ¢/_ ap-
pears in (4), a redefinition of the fields allows one to set n=1 (the remaining gauge fields ¢/+ in fact reduce to zero for
i >1). Thus upon combining (1), (2), and (4) one obtains as the total Lagrangian

= 7 (4 €4vad 0% — 0% €4vad L) +i7y, [P+ (3% —ieph —igoh )+ P (3" —iep” —igo})ly — Myy

of the general parity conserving theory.

(%)

While not immediately apparent, it turns out that the Lagrangian (5) can be reduced from a theory containing two
coupling constants e and g to one involving only a single arbitrary constant A and a parameter € which can take the
values * 1. To demonstrate this one makes the replacements

o4 — kle?—g?| T (egt —go%)
where k2 =1, to bring (5) to the form

2__,2
L=t (04 00D 0% — 9% €000 %9 ) 2
2 +€uva + —Cuva - |e2_ 2'
g
eZ_gZ
+iyy, | P+ a”—ik‘mq)i +P_|0"—ix

A minor relabeling of fields and coupling constants now establishes the equivalence of (6) to the Lagrangian

L=% (04 €,0a0%0% — 0% €,00°0% ) +igy, [P+ (8* — o)+ P - (8* —ikoL )y — Myy,

with A a coupling constant and ¢ a parameter which is
+1 (—1) for the situation in which the spin up field is
coupled to the gauge field with positive (negative)
Chern-Simons coefficient and the spin down field is cou-
pled to the gauge field with negative (positive) Chern-
Simons coefficient. Thus (7) is seen to be the most gen-
eral gauge and parity invariant Chern-Simons theory for
a mass-M fermion. Its construction furthermore estab-
lishes that a failure to detect experimentally the break-
down of parity invariance does not allow one to infer the
absence of Chern-Simons terms in the system.
The equations of motion implied by (7) have the form

7, [(1/i)8* —AP +¢¥ —AP ¢~ Jy+ My =0, (8)

€uva0'0% =T AYYP+y. ©)
Using the results of Ref. [2] one infers from (9) that the
3822

2,2
e‘—g _
—,ez—_émqﬁ‘i v—Myy. 6)
@)
rﬁelds ¢*% . are expressible in the radiation gauge

(V-9+.=0) as nonlocal functions of the current opera-
tors. Specifically
o x,0)=F fkfijvjdeX'fD(x —x')

xyl(x', 0P +y(x',t), (10)

0% (x,0)=7F exfdzx'lﬁ(x',t)yPi y(x',t)
xV'D(x—x'),
where D(x) is defined by
—V2D(x) =68(x) .

One of the most interesting aspects of the gauge theory
of Ref. [2] was the appearance of a noncanonical contri-
bution to the angular momentum which is proportional to

an
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0% where Q is the charge operator. In the model under
consideration here the corresponding term is e(A2/47x)
x(Q% —Q%), where

0+ Efdzxw*P +Vy.
This immediately yields for the commutator of the angu-
lar momentum J with y+ (x) the result

2
Wi(x)le%;{Qi,wi )}

[J,wi(x)]-—[rx%Vi—lz-o:‘

L= =2 01VX 04 =04+ XV04 -%¢+X%¢

-i-wf

at

—p302(—iV2—AP+92 —AP -9 )) |y.

and shows that anomalous spin effects can also occur in
parity invariant theories.

In order to study the implications with regard to frac-
tional statistics it is necessary to pass to the Galilean limit
of the model. Since the Galilean version of the photon-
less gauge theory has been developed in some detail in a
previous work [13], it is fairly straightforward to obtain
the desired result. Noting that in that limit ¢*— (¢,¢)
and using the spin one-half results of Levy-Leblond [14]

| one finds

)

+—;—¢_Vx¢_+-;—¢_ ><V¢_+%¢_x—¢_

ot

ii —AP+¢5—AP_¢_5] %(1 +03)+MU —03) —o1(—iVi—AP+9! —AP_¢L))

12)

The Hamiltonian which follows from (12) is found to |
have the surprisingly simple structure [15]

H=H,+H-_-, (13)

He=sb [dlyh G150

+anl(ylky+)?, (14)
where the @'+ . are given by (10) and the operators v+
are the components of y projected by 1 (1+063)P4,ie,

Y+ = l— (+063)0 xp3)y.
The latter can be seen to satisfy the equal-time commuta-
tion relations

fy+ G0, plk (x,0)} =6(x—x"),

fy+O,0),p (0} =0

and clearly comprise a parity doublet in that
Py+(x, )P '=yx(%,1).

It is important to note that because of (13) and (14)
the Hilbert space of states factors into a product of spin
up particle states times a corresponding set of spin down
particle states. Thus it is sufficient to consider the eigen-
value problem

HIN+)=E|N+),
where the state |N +) is a state of N 4+ spin up or N — spin

down particles. It is straightforward to show that the
vacuum and single-particle states are trivial since the |

2

kg +(x)—x;)= {E—I—MJMgi(xn—xz)= {——

19

ror or

Hamiltonian acting on the state

|li)=fd2xfi(x)v/*¢ )]0

implies a free Schrodinger equation for f+(x). In the
case of the two-body state, however, one obtains from the
eigenvalue equation for

|2i>=fd’-xld2x2fi(xl,xz)wE(xn)v"x (x2)]0),
where

S xx) =—f+(x3,x1),
that

Ef+(xy,x2) = ﬁ{n‘i"%n&_&"nfﬁa(xl —x)}
xf+(xy,x2),
where

2
ng,Z)EL-V(I,Z) F gD, —ry?
i 4r

and
(V), = EijVj .

Upon separating the center-of-mass coordinate one
derives total momentum eigenfunctions

f+Gx,x2) =expl(i/2)P- (x;+x2)lg + (x, —x32),

where

9 | 111 9 er? I A2 1
r2 [i 99 2r ] 627! ra(r)}g_(r"p)’

3823
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with  and ¢ denoting polar coordinates of x; —x,. Upon taking g + (r,¢) =e"™g + (r) there follows

10 9

——r—+k2—~lz—(m+ai)2$ai—i-5(r) g+(r)=0,
r

or

r or

where a+ = * eA%/2x. This result is recognizable as the
equation for the Aharonov-Bohm effect of spin one-half
particles with spin projections s = * 1 and flux parameter
a+. What is known about this system is that it has
singular solutions when the coefficient of the delta func-
tion gives an attractive effect [12]. In the current context
this means the case e= —1.

The implications of this result for fractional statistics
and the anyon are now immediate. For ¢=+1 the effect
of the delta function is repulsive and it is known from
Ref. [12] that such a term implies the usual Aharonov-
Bohm amplitude. This is precisely the familiar situation
in which fractional statistics can be used to replace the
Chern-Simons interaction and one thus concludes that an
anyon interpretation is consistent. On the other hand,
since the e=—1 case has singular solutions (for a
specific value of m), one cannot in this case eliminate the
Aharonov-Bohm interaction by a singular gauge transfor-
mation and a corresponding discontinuity condition on
the wave function across a singularity line. Thus the
anyon is not a consistent interpretation of the Chern-

Simons theory in the case e= —1.
A striking illustration of the inadmissibility of the
anyon interpretation when € = —1 is provided by a calcu-

lation of the second virial coefficient for a system of spin
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FIG. 1. The virial coefficient B2(a-,T) for the spin down
case.

3824

(15)

r

up or spin down particles. It is straightforward using
techniques of Ref. [16] to obtain for the spin down case

the virial coefficient B,(a—,T) at temperature 7. In

terms of the thermal wavelength A+ =QzMkT) 2,

1—2[32, N even,
1—2(B—1)% Nodd, N <0,
1—2(B+1)2% N odd, N>0,

By(a—,T)=1%r}

where a—- =N+ with N an integer and 0 <3 <1. The
result is plotted in Fig. 1. It is sufficient to note that the
discontinuities in B, and the nonperiodicity in a are both
at variance with the anyon interpretation.

While this establishes that fractional statistics cannot
generally be inferred in a Chern-Simons gauge theory,
one might nonetheless ask whether fractional statistics
could be considered “more fundamental” than Chern-
Simons dynamics. Such a view is difficult to maintain,
particularly when viewed in the light of what is known
about the dynamics of spin. Since, for example, helicity
is conserved for a Dirac particle moving in a time-
independent magnetic field (a result which underlies g —2
experiments), the rejection of the Chern-Simons ap-
proach (which respects this helicity conservation) in favor
of fractional statistics (which does not [17]) contradicts
well established experimental results. Thus the use of
fractional statistics as a physical postulate in applications
other than the nonrelativistic treatment of spinless parti-
cles must certainly be considered suspect. Chern-Simons
gauge theories, on the other hand, have no such limita-
tions and clearly include fractional statistics as a special
case in all instances where the latter can be successfully
applied. If one subscribes to the philosophical principle
that the assumptions introduced to explain a phenomenon
should not be increased unnecessarily (Occam’s razor),
the anyon must seem a superfluous concept at best.
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