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ein-Simous term Before proceeding it is important to sharpen the issues

n 2+1 space was involved in point (1) as detailed above. Applications to

possibility of hav- date of fractional statistics to condensed matter systems

d level in a gauge implicitly assume the simplest po ssible formulation of this

y shown [2] that theory. That model could indeed be contradicted by ex-
ed even when the periments such as those described in Refs. [8-10]. On

entire gauge field the other hand, null results for such tests would not ex-

em lacks an ele- elude parity conserving theories of the type constructed in

f the gauge field is this pap r. It will also be shown that these latter models

een charged parti- are sometimes compatible with fractional statistics and

show [3] that in sometimes not.
t the two-particle It must also be noted that the possibility of restoring P

Aharonov-Bohm and T invariance to Chem-Simons theories has been
mentioned in the literature [1,11]. In fact there is gen-

dely thought to bc eral recognition of the fact that thc formal device of pari-

gauge theory has ty doubling allows the restoration of parity invariance to
ation in that con- any given theory. This paper enlarges this issue some-

ly accepted views what by carrying out the explicit construction of the most

careful scrutiny. general Chem-Simons parity invariant theory. This pro-
nce of a Chem- vides the specific framework necessary to discuss the cru-
me reversal T are cial issue concerning the equivalence or nonequivalence of
unters statements Chem-Simons and fractional statistics theories.
systems, the only To carry out the construction one notes that for a set of
ng to bosons and gauge fields pf (i =1,2, . . . , N) the most general Abelian

between Chem- Chem-Simons Lagrangian can be taken as
(i.e., the "anyon" Rue ,' ill"e„„,At) P", —
ivially true in the

where A is a real symmetric matrix. An orthogona1
tivated a number transformation can be used to diagonalize A while a sub-

sequent rescaling of the fields yieldslly to detect such
obtained to date
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It is shown that by including both the spin up and spin down components of a spin one-half
parity conserving Chem-Simons theory can be constructed. For a single fermion field the m

tains (aside from the mass and a coupling constant) a parameter e which can have the values ~
shown that only the positive value allows an interpretation in terms of anyons. This result thus s

sharpen the frequently overlooked distinction between the Chem-Simons interaction and the
While the former can be introduced into any (2+1)-dimensional field theory, the latter is seen

special limiting case obtained only when relativistic and spin considerations can be ignored.

PACS numbers: 05.30.-d
The introduction [1] of the Ch

e„„,A"O'A" into the QED Lagrangian i

remarkable in that it demonstrated the
ing a finite photon mass at the free-fiel
invariant theory. It was subsequentl
rather interesting results can be obtain
Chem-Simons term is taken to be the
Lagrangian. In particular such a syst
mentary photon so that the sole effect o
to mediate long-range interactions betw
cles. It is also fairly straightforward to
the Galilean (or "nonrelativistic") limi
sector of this model is equivalent to the
effect [4].

Since high-T, superconductivity is wi

a planar phenomenon, this photonless
been the object of considerable applic
text. There are, however, two common
to be found in such work which require
These are as follows: (1) "The prese
Simons term implies that parity I' and ti
violated, of course" [S]. One also enco
to the effect that [6] "in T-invariant
possible statistics are those correspondi
fermions. " (2) Equivalence is assumed
Simons and fractional statistics theories
[7]). In fact the first point (which is tr
simplest Chem-Simons theory) has mo
[8-10] of experiments designed specifica
I' and T violating effects. The results
are, however, inconclusive on this point.
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where s; =+ 1. The requirement that Log be parity in-

variant implies that Ã must be even and that the degen-
eracies of s;=+1 and s;= —1 are equal. Thus one
writes

I
+Og 2 Zr 4'i+epvar) 4i+ 4i —epvar) il i —] ~

i 1

where the parity transformation of the fields is expressed
by

Ppf~ (x,t)P ' =pf~ (x, t) x ~
+1, p=o, l,
—1, @=2,

and x; -(xi, —x2).
For a spin one-half (two component) field of mass M

and spin component s/2 the free Lagrangian can be writ-
ten as

L{)f= l p j' 8~(/f Mph', (2)

where the Dirac matrices can be taken to have the Pauli
form [12]

p=a3 py (Oi $02). (3)

A theory in which both spin up (s =+ 1) and spin down
(s= —1) particles are accommodated is then trivially
realized by replacing s in (3) by the third Pauli matrix pi
(where [p;, sr~] =0) and a corresponding doubling of the
number of components of y. The parity operation for the

y field is then seen to be

Pitt(x, t)P ' =piilt(x, t),
which is clearly an invariance of the Lagrangian (2).

The most general gauge coupling between the set p"
and the spinor field its is

&;.i= Z [ily, P+y«e"++g e," )+V-y.P W(e e—,
" +g-0-,"+)], (4)

where the projectors P ~ onto the spin up and spin down fields are

P+ =
2 (1 ~ p3) .

At this point it is straightforward to establish that since only a single linear coinbination of the p;+ and of the p; ap-

pears in (4), a redefinition of the fields allows one to set n =1 (the remaining gauge fields pP~ in fact reduce to zero for

i ) 1). Thus upon combining (1), (2), and (4) one obtains as the total Lagrangian

J =
2 (i/i~ye„„,8'py —p" e„„,8'p" )-+ii7ty„[P-+ (8"—iep~~ igiti" )+P—(r)"-—t'eiti" —

ig-it—i+ )]iti
—My@ (5)

of the general parity conserving theory.
awhile not immediately apparent, it turns out that the Lagrangian (5) can be reduced from a theory containing two

coupling constants e and g to one involving only a single arbitrary constant X and a parameter t. which can take the

values + 1. To demonstrate this one makes the replacements

y~~ —ir)e' —g'~ '"(eiti~~ —gy"—)

where tr =1, to bring (5) to the form

2 — 2 2 — 2

+ii7ly„P+ |1"—ia2 'z,
&2 p+ +P- r)" —t&, 2 z~, &2

0"— iti M%V'.

A minor relabeling of fields and coupling constants now establishes the equivalence of (6) to the Lagrangian

X = —,
'

(itive„„,B'P+ p" e„„,t)'p" )+—iyy„[P+ (r)" —t7 p,")+P (|1"—ikP"—,)]y —Mi7ty, (7)

with A, a coupling constant and e a parameter which is

+1 ( —1) for the situation in which the spin up field is

coupled to the gauge field with positive (negative)
Chem-Simons coefficient and the spin down field is cou-

pled to the gauge field with negative (positive) Chern-
Simons coefficient. Thus (7) is seen to be the most gen-

eral gauge and parity invariant Chem-Simons theory for
a mass-M fermion. Its construction furthermore estab-
lishes that a failure to detect experimentally the break-
down of parity invariance does not allow one to infer the
absence of Chem-Simons terms in the system.

The equations of motion implied by (7) have the form

y„[(l/i )tl" —XP ~pg —XP p",] gati+ My =0, (8)

&py~~ p+ p —E'kl/ff P + tp'. (9)
Using the results of Ref. [2] one infers from (9) that the

3822

fields p~+. , are expressible in the radiation gauge
(V. iIi+, =0) as nonlocal functions of the current opera-

tors. Specifically

y~, (x,t) = T eke;, V, d'x'S(x —x')

x yt(x', t)P w y(x', t), (10)

go~, (x, t) = T eZ d'x'itt(x', t) yP ~ iIi(x', t)
x V'g)(x —x'), (1 1)

where $(x) is defined by
—V'2)(x) =b'(x) .

One of the most interesting aspects of the gauge theory

of Ref. [2] was the appearance of a noncanonical contri-

bution to the angular momentum which is proportional to
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Q where Q is the charge operator. In the model under
consideration here the corresponding term is t. (A, /4z)
x (Qg —

Q ), where

Q~ —= d2xytP+y.

This immediately yields for the commutator of the angu-
lar momentum J with y~ (x) the result

[J,y~ (x)] —rx —V+ —~3 p+(x)+& 'IQ+, l/f+ (x)]
7 2 X

and shows that anomalous spin eA'ects can also occur in

parity invariant theories.
In order to study the implications with regard to frac-

tional statistics it is necessary to pass to the Galilean limit
of the model. Since the Galilean version of the photon-
less gauge theory has been developed in some detail in a
previous work [13], it is fairly straightforward to obtain
the desired result. Noting that in that limit p" (p, ~)
and using the spin one-half results of Levy-Leblond [14]
one finds

fyV—xp+ —Py xVfg ——P+x P++ —P Vxg +—P VP +—P—1 1 1 1

2
'

2 2 |lt 2 2 2 Bt

—
1L,P+y, —

A.P y —,—(I+o3)+M(1 —o3) —crl( iVi ——XP+y,' —
&,P p', )'

2

—p3o2( tV2 —
A,P+p—, AP p

—,)—— (12)

The Hamiltonian which follows from (12) is found to
have the surprisingly simple structure [15]

H H++H —, (13)
ta

H+ - d x [y+ (p &)+&) ~Y—+
2M~

(14)

and clearly comprise a parity doublet in that

Py~(x, t)P ' -y~ (x, t) .

+A, '(p t- lp ~ )'],
where the p+, are given by (10) and the operators y+
are the components of y projected by —,

' (1+o3)P ~, i.e.,

y+ —= ~ (I + cr3) (I +' p3) y.
The latter can be seen to satisfy the equal-time commuta-
tion relations

flit+�(x,

t), pi+ (x', t)] -b(x —x'),
[y~ (x,t), y~(x', t)] =0

Hamiltonian acting on the state

i I+ &
- d'x f+ (x)mt+ (x) 10&

implies a free Schrodinger equation for f~(x). In the
case of the two-body state, however, one obtains from the
eigenvalue equation for

i2+& d xid xf2+( x, ix)2&+( ix)W+( x)2l0&

where

f+ (xl,x2) = f+ (x2, x 1)—,
that

Ef (x&,x2) [11 ' +II +2~a b(xl —x2)I

xf~ (xl,x2),

where

A,
2—II""=—V&"&~/ V""Inir, -r, i2

4~

(V);=eilVJ .

Upon separating the center-of-mass coordinate one
derives total momentum eigenfunctions

f+ (xl,x2) =exp[(il2)P. (x|+x2)]g+(x|—x2),

It is important to note that because of (13) and (14)
the Hilbert space of states factors into a product of spin

up particle states times a corresponding set of spin down
particle states. Thus it is suScient to consider the eigen-
value problem

HI&+ & =E I&+ &,

where the state iN ~ & is a state of 1V+ spin up or N spin—
down particles. It is straightforward to show that the
vacuum and single-particle states are trivial since the

where

k g~(xi —x2)—= E — Mg~(xi —x2)= —— r + — ~ +e —b(r) g~(r, y),
P 1 8 8 1 1 8 eA, k 1

4M r Br Br r i 8$ 2x, 2x r
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