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Evolution of Long-Range Fractal Correlations and 1lf Noise in DNA Base Sequences
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A new method of quantifying correlations in symbolic sequences is applied to DNA nucleotides. Spec-
tral density measurements of individual base positions demonstrate the ubiquity of low-frequency 1/P'
noise and long-range fractal correlations as well as prominent short-range periodicities. Ensemble aver-

ages over classifications in the GenBank databank (primate, invertebrate, plant, etc.) show systematic
changes in spectral exponent P with evolutionary category.

PACS numbers: 87.10.+e, 05.40.+j, 06.50.—x, 72.70.+m

A wide variety of physical systems show power-law
correlations in space (fractals) [1-3]or time (1/f noises)
[4,5]. The characterization and understanding of these
correlations has become an important and surprisingly
difficult problem. Although diffusion limited aggregation
[2] and self-organizing criticality [6] are based on simple
physical models, a detailed prediction of their power-law
correlations has proven illusive. The measurements re-
ported here demonstrate that similar power laws have
evolved in DNA.

Numerous attempts have been made to characterize
and graphically portray the genetic information stored in

DNA nucleotide sequences [7-12]. One popular method
maps the four individual bases to steps in a variant of a
random walk. Unfortunately, when the number of spatial
dimensions is less than 4, the mapping itself introduces
correlations between the bases. Nevertheless, recent re-
sults [11]on a few sequences have shown long-range frac-
tal or scaling correlations. Here, a new method of
characterizing arbitrary symbolic sequences is described
that does not introduce correlations between symbols.
When applied to DNA sequences it confirms the ubiquity
of low-frequency I/ft' noise and the corresponding long-
range fractal correlations as well as prominent short-
range periodicities. Moreover, averages over & 5 x 10
bases from & 25000 sequences in 10 classifications (pri-
mate, invertebrate, plant, etc.) of the GenBank [13]data-
bank show systematic changes in correlations and spec-
tral exponent P with evolutionary category.

There are a number of accepted techniques [14] for
characterizing random processes x(t). Both the correla-
tion function C, (z) (x(t)x(t+z)) and the spectral
density S (f) ~

I fx(t)e 'dtl /hf quantify correla-
tions at the time scale z= 1/f Generally, S.,(f) and
C~(z) are connected by the Wiener-Khintchine relations
[14], S (f) cx:fC (z)cos(2nz)dz and C (z) crfS (f)
xcos(2')df. Fast Fourier transform (FFT) algorithms
allow efficient direct computation of S„(f) from sample
sequences and the estimation of C„(z) from S (f).

A true random process or white noise w(t) has no
correlations in time. C (z)~8(z) and S (f) cLconst.
Its integral X(t) fw(t)dt produces a Brownian motion
or random walk with Sx(f) ~1/f . The average dis-

tance traveled in a time T is hX(T) (IX(t+T)
—X(t)l )'i ~ T't . Like w(t), the future changes of
X(t) are independent of its past.

Many naturally occurring ffuctuations, however, from
electronic voltages and time standards to meteorological,
biological, traffic, economic, and musical quantities
[1,4,5, 15-18] have nontrivial correlations that extend
over all measured time scales. These 1/f noises exhibit
S(f) ~1/fS with P= 1 over many decades. In most
cases, the physical reason for this long-range power-law
behavior remains a mystery.

The most effective mathematical model for such scal-
ing noises has been fractional Brownian motion (fBm)
[19,20] as the integral of fractional Gaussian noises
xH(t). A fBm process XH(t) fxH(t)dt is specified by
0&H &1 such that

~H(T) -(IXH«+» —XH«) I'&'" ~ T",
and a corresponding

S,(f) ~1/f~

where P 2H —1 for the increments xH(t) Thus, .as
H 0 the fBm XH(t) 1/f noise and xH(t) f noise.
As H 1, XH(t) 1/f noise and xH(t) 1/f noise.
H 2 gives norma/ Brownian motion.

A definition for the product x(t)x(t+z) is central to
C(z), S(f), and ~(T). For non-numeric sequences
xt, . . . , xjv, composed of K allowed symbols care must be
taken to define procedures that do not make a priori as-
sumptions about relations between the symbols. Assign-
ing a number to each symbol, or a walk displacement
[8-12] along a direction in a D-dimensional space with
D & K, introduces numeric correlations.

Such problems may be avoided with equal symbol-
multiplication defined as x„x =1 if x„=x, and 0 oth-
erwise. A binary indicator function or projection opera-
tor Uk selects the elements of x„ that are equal to symbol
k. Uk[x„] 1 if x„=k, and 0 otherwise. Consequently,
x~x~ gt, Uk [x„]Uk [x~] and

1V JC K
C(z)-—g g Uk[x„]U, [x„+,]= g Ck(z).&S-ik-i
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Here Ck(z), the equal-symbol correlation function for
symbol k, is the probability that x„+,=k if x„=k. Simi-
larly,

correlations between difI'erent bases and illustrates the
difficulties with low-D walks. For some averaging scales
and positions (e.g., around 160000) the pyrimidines (C,
T) are strongly anticorrelated, around 100000 the corre-
lation is near 0 while near 115000 the correlation is posi-
tive. At all scales, however, the Uq[x„l are extremely ir-
regular and there is little change as the averaging is in-

creased from 10 to 100 and 1000 sites.
This independence of scale is confirmed by the mea-

sured equal-symbol Sk(f) shown at the top of Fig. 2.
The sequence was divided into independent sections of
size NFFT=2' for FFT transforms and the results from
individual sections were averaged together. Although
there are small differences, each of the Sk(f) has the
same overall behavior At. large f (small z) Sk(f) is

dominated by the white noise of an uncorrelated random
process. Within the white noise there is a sharp peak at
f —,

' (period z =3) that is probably related to the nu-

cleotide triplet (or codon) that specifies one of 20 amino
acids [7]. At low f (large z), however, Sk(f) shows
power-law scaling similar to I/f noise. For comparison
and as a verification of the method, a superposition of the

S(f)- g S,(f)
k 1

where Sk(f) is the equal-symbol spectral density of sym-
bol k.

Thus, as symbolic sequence may be decomposed into
the K binary sequences Uk[x„] which identify the posi-
tions of symbol k. Fourier transforms of Uk[x, ] yield
the frequency components, Uk(f), the individual Sk(f)
cc

I Uk (f)I, and Ck (z ), as well as S~(f) QSk (f)
and Cx(z ) QCk (z ). Cross-correlation spectra, SJ k (f)
IxUJ(f)Uk(f) between different symbols j and k may
also be calculated.

This method is illustrated with the 229354 bases in

the complete genome [21] of the human Cytomegalovi-
rus strain AD 169 (GenBank [13] accession number
X17403). Figure 1 shows the four indicator functions
Uk[x, ] (k A, C, G, T) at different levels of averaging.
This plot graphically reveals many positive and negative
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FIG. 2. Equal-symbol Sk(f) for the 229 354 base sequence in

Fig. 1. Sq (f) for the first 1.13x 109 decimal digits of x is shown

for comparison. AS(f) S(f) —S(~) reveals the long-range

I/f dependence. Least-squares estimates of P are shown as

solid lines and spectra are offset for clarity.
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FIG. 1. The indicator functions Uk[x„l (k A, C, G, T) for
the 229354 bases in the complete genome of the human

Cytomegalovirus strain AD169. Successive curves show aver-

ages of Uq [x„]over 10, 100, and 1000 sites.
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FIG. 3. Equal-symbol hSz(f) for categories of DNA se-

quences from the GenBank Release 68 databank. Least-
squares estimates of P are tabulated and the resulting fits are
shown as solid lines. hSz(f) offset for clarity.

10 Sk(f) for the first 1.13x 10 decimal digits of x [22] is

also shown. This symbolic sequence shows no long-range

correlation.
In many cases I/f~ noises can be studied over larger

ranges by subtracting the high f white-noise limit [23]
hS(f) S(f) —S(~) under the assumption that the I/ft'

and white noises are independent. The subtraction is also

illustrated in Fig. 2, where the AS(f) ~1/ft' scaling

clearly extends from around 100 bases to 100000 bases.
Differences in the exponents Pg are visible. For this sam-

ple, A is most correlated with T and C with G at low f
A similar separation of the short-range and scaling com-

ponents is much more diIIicult with hX(T) analysis [11].
The limited accuracy of estimating P from individual

sequences can be greatly reduced by averaging over the

large number of DNA sequences in the GenBank data-
bank. The GenBank classification (mammal, inver-

tebrate, plant, etc.), moreover, allows examination of sta-
tistical changes with evolutionary category.

Figure 3 shows log-log plots of the equal-symbol

hSz(f) ghSt, (f) averaged over specific categories in

the GenBank Release 68 database with NF~ 2048. Se-
quences ~ 2NFFY contributed multiple samples. The
average included the 6610 sequences )NF~ and

significantly reduced the scatter about I/f~.
The category average also clarifies the small period

(high f) variations. Figure 4 shows S (z1/f) versus

period r 1/f for NFrT 512 to emphasize short-range
structure. The large narrow codon peak at period 3 is the
most prominent feature, but the increased averaging al-

lows other small structures to be visible. For example,
the peak at period 9 for primates, vertebrates, and inver
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FIG. 4. Equal-symbol Sz(f) $$k(f) vs period z I/f for specific categories of DNA base sequences from the GenBank Release
68 database emphasizes short-range correlations. In this linear plot successive Sz(f) are offset for clarity and N~ is tabulated for
each category.
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tebrates is absent in the other categories.
Systematic changes in P are clearly seen in the

category averages of Fig. 3. S(f)~ I/f~ with P= I is

the signature of fractal (scaling) correlations that extend
to the size of the largest sequences (of order 100000
bases). Bacteria and phage show the smallest range of
scaling. For the remaining categories, there is a sys-
tematic P increase with evolutionary status from 0.64 for
organelle to the 1.00 (exact I/f noise) of invertebrates
followed by a decrease to 0 77 for primates. For
0 (P ( I, increasing P increases the recovery probability
from a DNA error but decreases the information content

per unit length.
Earlier measurements of pitch and loudness ffuctua-

tions in music and speech [16,17,20] related S(f) cc I/f
to human communication. A white noise represents the
maximum rate of information transfer, but a 1/f noise,
with its scale-independent correlations, seems to offer the
best compromise between efficient information transfer

and immunity to errors on all scales.
Although the measurements presented here are quite

striking, they represent only a beginning to the fractal
analysis of the expanding DNA sequence databank.
Equal-symbol Sk(f) and category averages provide a new

technique for quantifying evolutionary changes in the in-

formation content of DNA. Cross-spectra and graphic
techniques are being developed to highlight specific corre-
lations along the sequence.

The author wishes to thank Professor Avy Goldberger
for exposure to the general problem of fractal analysis of
DNA sequences and for initial samples for testing.
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