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Chiral Ordering in Heisenberg Spin Glasses in Two and Three Dimensions
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The nearest-neighbor Heisenberg spin glass in two and three dimensions is studied by means of a
T=o domain-wall renormalization-group method with a focus on the chiral ordering. In d=2 dimen-
sions, both the spin and chiral components order at zero temperature with diAerent correlation-length
exponents, while d 3 appears to be just above the lower critical dimension of the chiral component dI",
though the possibility that dI" 3 cannot be ruled out. A chirality drii en mechanism is proposed as a
new possible mechanism of experimentally observed spin-glass transitions.
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Frustration in vector spin systems often gives rise to the
noncollinear or canted spin ordering. Such frustration-
induced noncollinear spin structure is known to bear a
discrete degeneracy, called chirality [I], where the non-

collinear spin structure is either right or left handed. In

regularly frustrated vector spin systems in three spatial
dimensions such as stacked-triangular antiferromagnets
and helimagnets, it has recently been recognized that a
new type of symmetry associated with this chiral degen-
eracy leads to novel critical behavior which most prob-
ably lies in a new universality class, sometimes called
chiral universality class [2]. Novel critical properties
were also reported recently in the corresponding two-
dimensional chiral spin systems [3].

In randomly frustrated vector spin systems such as XY
and Heisenberg spin glasses, chirality is also expected to
play an important role as was first suggested by Villain
[I]. Although the study of chirality in vector spin glasses
has been rather scarce so far, its potential importance in

elucidating the nature of the spin-glass transition should
be born in mind in view of its crucial importance in un-

derstanding the phase transition of regularly frustrated
vector spin systems. Furthermore, one may also notice an
interesting but hitherto unsuspected possibility that such
an Ising-like chiral degree of freedom "hidden" in vector
spin glasses might offer an entirely new perspective [4(a)]
in understanding the yet incompletely solved issue con-
cerning the nature of experimentally observed spin-glass
transitions: Namely, although most of the real spin-glass
materials are well approximated by an isotropic Heisen-
berg model, experimentally observed spin-glass transi-
tions appear to be well described by an anisotropic Ising
spin glass [5]. A puzzling point here is that no detectable
sign of Heisenberg-to-Ising crossover has been observed
in experiments which is usually expected to occur if the
observed Ising-like critical behavior is caused by the weak
magnetic anisotropy inherent to real spin glasses [5-7].

Recent numerical studies on the chirality ordering in
an (n 2)-component XY spin glass have revealed in-
teresting new features [4,8-101. In two dimensions,
Kawamura and Tanemura observed through a Monte
Carlo simulation [4] and a domain-wall renormalization-
group (DWRG) analysis [8] that the ordering tendency

of chirality was much enhanced as compared with the
original XY spin, although both the chirality and XY spin
ordered at zero temperature. In fact, these authors
claimed the existence of two distinct diverging length
scales in this zero-temperature transition, the associated
spin and chiral correlation-length exponents being v=1.2
~O. IS and v„=2.6~0.3, respectively [8]. This rather
unusual property was also observed by the recent Monte
Carlo calculation by Ray and Moore, who found v=1.0
and v„=2.0 [9]. For a three dime-nsional XY spin glass,
Kawamura and Tanemura reported the evidence of a
finite-temperature chiral-glass ordering without the con-
ventional spin-glass order parameter [8]. The low-tem-
perature phase is then an unusual "chiral phase" where a
reflection symmetry is broken with a rotation symmetry
being preserved.

By constrast, few calculations have been made on the
chirality ordering of an (n=3)-component Heisenberg
spin glass, a good zeroth-order approximation to real spin
glasses. Numerical studies based on Monte Carlo (MC)
simulations and DWRG methods were made by several
authors for three-dimensional short-range Heisenberg
spin glasses, with no particular attention to the chirality
[6,I I-I3]. These authors agreed that the conventional
spin-glass ordering occurred only at zero temperature,
but very little is known about its chiral ordering [I4].

ln the present Letter, I investigate the random ~J and
Gaussian Heisenberg models at zero temperature in both
two and three dimensions based on a numerical DWRG
method, with a focus on its chiral ordering. The model is
the nearest-neighbor classical Heisenberg model on a
(d 2)-dimensional square and a (d =3)-dimensional
simple cubic lattice defined by

where S; is a three-component unit vector and the sum
runs over all nearest-neighbor pairs. The J;~ are indepen-
dent random variables either with the binary distribution
taking the values +J and —J with equal probability, or
with the Gaussian distribution with zero mean and the
variance J.

The local chirality a.; may be defined by the scalar
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say the z axis, as S, ( —S, —S,S, ). In practice, I

impose reflection (or rotation) boundary conditions in one
direction and periodic boundary conditions in the remain-
ing d —

1 directions. Evidently, reflection boundary con-
ditions accompany the flipping of chirality and introduce
a chiral domain wall into the sample, whereas rotation
boundary conditions do not. Thus, the difference between
the ground-state energies for reflection and rotation
boundary conditions, e, =E„,.[. —F.„,&, should contain the
contribution of the chiral domain wall.

The advantage of using t. , instead of t. defined above as
a measure of the chiral domain wall is that the contribu-
tion of the spin domain wall is more or less canceled in e,
The reason is the following: It is found that the ground-
state energy for reflection (or rotation) boundary condi-
tions is somewhat lower than that for periodic (or an-
tiperiodic) boundary conditions, namely, one has [E„.&]z
= [E„N)J & [Ep)J = [E&p]z. This energy difference
should be attributed to the contribution of the spin
domain wall, since no chirality flipping occurs between
reflection and antiperiodic boundary conditions (or be-
tween rotation and periodic boundary conditions). This
means that the application of reflection or rotation
boundary conditions releases the spin domain wall.

Roughly speaking, both reflection and rotation boundary
conditions tend to bring on the spin-domain-wall off

states, while periodic (antiperiodic) boundary conditions
tend to bring on the spin-domain-wall on/off (off/on)
state with equal probability. Consequently by consider-

ing [E,„~)J and [E„,.r]q instead of [Ep]q and [EAp]q the
contribution of the spin domain wall is canceled in t,

As a measure of the spin domain wall, I adopt the en-

ergy diff'erence between the periodic and rotation bound-

ary conditions, t. , =Fp —F. ,„[, since by this definition the
contribution of the chiral domain wall is expected to be
canceled. Finally, the chiral- and spin-domain-wall ener-

gies averaged over samples, W, and H', , are defined by
the variance

(2)

&, . , (L) =[(~, , [~, r)J)')J'—-
Concerning the corresponding odd quantities, one expects
from the above discussion that [e,.]J should vanish while

[er, ]J should exhibit the scaling behavior of the spin

domain wall. These requirements may be used as a check
of consistency.

The lattice sizes studied are L =4-14 at d=2, and

L =3-6 at d =3. Sample averages are taken over 50000
(L=4), 10000 (L=6), 5000 (L=8, 10, 12), and 3000
(L =14) independent bond realizations at d =2, and

50000 (L=3), 30000 (L =4), 4000 (L =5), and 3000
(L =6) at d=3. The ground-state energy is estimated by

repeating a spin-quench algorithm many times [7(a),8].
In fact, I have made 5 (L =4,6), 10 (L =8), 20 (L =10),
30 (L =12), and 100 (L =14) trials for each sample at
d=2, and 5 (L =3,4), 40 (L =5), and 100 (L =6) trials
at d=3.

where &+Bi and i+b~ denote two distinct nearest-
neighbor sites of the site i. Note that the scalar chirality
defined by Eq. (2) is cubic in the original spin variables,
in contrast to the chirality for the XY spins which is

quadratic in the spins. Note also that the chirality is a
pseudoscalar in the sense that it is invariant under global
spin rotation but changes its sign under global spin
reflection (or inversion which can be viewed as a com-
bination of reflection and rotation). Evidently, chiral or-
der can be regarded as a manifestation of the breaking of
the reflection symmetry.

In the standard DWRG method [7(a),11,12), the
domain-wall energy for a given sample of linear dimen-
sion L is defined as a difference between the two ground-
state energies for periodic and antiperiodic boundary con-
ditions. Usually, the variance of the distribution of this

energy difference over samples, W(L) = [e'-]J
'-with

5—=Fp F /tt, p, is taken as a measure of the averaged
domain-wall energy, where Ep and EAp are the total
ground-state energies for periodic and antiperiodic
boundary conditions, respectively, and [ lq denotes a
bond average. When W(L) behaves as W(L) a: L " for
L&)1, either positive or negative y is associated with a
zero-temperature or a finite-temperature phase transition,
respectively. If the transition occurs at zero temperature
(y &0), in particular, the associated correlation-length
exponent v is expected to be determined via the relation
v - I/y.

In the case of an XY spin glass, the application of an-
tiperiodic boundary conditions does not cause the flipping
of chirality [8). In the Heisenberg case, by contrast, the
application of antiperiodic boundary conditions causes
the flipping of chirality and introduces a chiral domain
wall into the sample, in addition to the conventional spin
domain wall which accompanies a continuous rotation of
spins. Thus, in the Heisenberg case, even the standard
domain-wall energy should include the contributions of
both the chiral and the spin domain wall. If so, the ob-
servation of a zero-temperature transition in Refs. [I I]
and [12] seems to exclude the possibility of a finite-

temperature chiral ordering either in two or three dimen-

sions. However, since the investigated lattice sizes were
rather small, there remains a possibility that the contri-
bution of the chiral domain wall was masked by that of
the spin domain wall in Refs. [I I] and [12].

In order to detect the contribution of the chiral domain
wall in a Heisenberg spin glass more directly, I introduce
two new types of boundary conditions: One is "reflection
boundary conditions" in which boundary spins are
reflected with respect to a fixed plane in the spin space,
say the x-y plane, as S; (S,S,—5, ); the other is

"rotation boundary conditions" in which boundary spins
are rotated by 180 around a fixed axis in the spin space,
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FIG. 1. L dependence of the spin-domain-wall energy W.,
and of the chiral-domain-wall energy 8',. on a log-log plot for
the nearest-neighbor Heisenberg spin glass (a) on a L x L
square lattice and (b) on a LxLxL simple cubic lattice, for
both the + J and Gaussian bond distributions. The error bar
on each point is one cr associated with sample average.

The L dependence of the calculated W, and W, . is

displayed in Figs. 1(a) and I (b) in each case of d=2 and
d=3. In d=2 dimensions, both W, and lY, . are found to
be iterated toward weak coupling for both kinds of bond

distributions, indicating that both the spin and chirality
exhibit a zero-temperature transition. Indeed, the data
for W, lie on a straight line reasonably well at 10~ L( 14 with a slope y=0.83 (~J) or y= I.05 (Gaussian),
while the data for W, . lie on a straight line reasonably
well at 8~ L &14 with a slope y=0.48 (+J) or
y=0.47 (Gaussian). The result clearly indicates that the
Heisenberg spin and chirality bear mutually different
correlation-length exponents at the zero-temperature
transition; namely, one has v I/y =1.2+'0. 15, v, = I/y„

2.1+0.2 for the +J distribution, and v 1.0+0.15,
v„=2.1 ~0.2 for the Gaussian distribution. Concerning
the corresponding odd quantities, [e,.]l is found to vanish

within the error bar, while the scaling plot for [e,.]J (not
shown here) yields y=0.99 for both bond distributions,
consistent with the values obtained above from the vari-

ance. The present estimates for the standard spin-glass
correlation-length exponent v are considerably larger
than the previous DWRG estimate for the Gaussian dis-

tribution, v=0.714+'0.015 [12], but close to the Mig-
dal-Kadanoff RG estimate, v=1.08 [7(a)], and to the
estimates for the two-dimensional XY spin glass, v

1.09+0.05 (DWRG, Gaussian) [7(a)], v=1.2+0.2
(DWRG, ~ J) [8], and v-l.0~0.06 (MC, ~J and

Gaussian) [9]. On the other hand, the estimate for v, is

new and is rather close to the corresponding value for the
XY spin glass [8,9].

In the d=3 case, W,. is iterated toward weak coupling
for both kinds of bond distributions, which indicates that
an ordinary spin-glass ordering occurs only at zero tem-
perature consistent with a common belief. Indeed, the
data for W,. lie on a straight line reasonably well at
4& L &6 with a slope y=0.49 (+J) or y=0.51
(Gaussian), yielding the correlation-length exponent
v 2.0+'0.2 for both bond distributions. Concerning the
odd quantities, [e,.]J is found to vanish within the error
bar as expected, while the scaling plot for [e,. ]1 yields
y=0.46 (~J) or y=0.36 (Gaussian) though the data
are rather noisy in this case. The present estimate for v is

again some~hat larger than the previous numerical esti-
mates by other authors; v 1.54+ 0.19 (DWRG, Gauss-
ian) [121, v= I.14 (MC, Gaussian) [6], and v 1.35
~0.05 (MC, ~ J) [13], but come rather close to the
Migdal-Kadanoff RG value, v=2.3 [7(a)], and the
DWRG estimates for the three-dimensional XY spin

glass, v=2.2+0.05 (Gaussian) [7(a)] and v=2.4+0.3
(~J) [8].

By contrast, one finds nearly marginal behavior for the
chiral-domain-wall energy. In the +J case, the calculat-
ed IV, . shows only weak size dependence except for a
small even-odd effect. The straight-line fit to the data
yields a slope y„= —0.07 which is slightly negative but is

fairly close to zero. In the Gaussian case, W, . appears to
be iterated toward strong coupling for very small lattices,
although nearly marginal behavior reminiscent of the one
observed in the + J case is found for larger lattices. The
straight-line fit to the data at 4& L ~ 6 yields y„=0.15,
and the one at 5 ~ L ~ 6 yields y„= —0.03. Thus, I con-
clude that d 3 is close to the lower critical dimension
(LCD) of the chiral component. The occurrence of a
chiral-glass transition at a low but finite temperature
seems to be favored from the data, although in view of
the smallness of the obtained iy„i values the possibility of
a zero-temperature transition with the exponentially
diverging chiral correlation length, (,-exp(A/T ), can-
not be ruled out. It should also be noticed here that, even
if a short-range Heisenberg spin glass might not exhibit a
finite-temperature chira1 ordering, the corresponding
long-range RKKY spin glass may well exhibit one.

In view of the observations that the chirality in various
chiral spin systems often behaves like an Ising variable
[3,4,8, 10], it seems not so unreasonable to expect that the
exponents associated with a possible finite-temperature
chira1-glass transition are c1ose to, if not completely iden-
tical with, the 3D Ising spin-glass exponents. Then, it
would not be so premature to give the following conjec-
ture on the nature of experimentally observed spin-glass
transitions: Spin-glass transition in eanonieal spin
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glasses might essentially be chirality driven. Of course,
if the experimental system were completely isotropic
without any magnetic anisotropy, a finite-temperature
chiral ordering, if any, would not be detectable by
measuring the conventional nonlinear susceptibility since
the chiral ordering in an isotropic system does not accom-

pany the divergence of the standard spin-glass suscepti-
bility. However, in the presence of weak magnetic anisot-

ropy, the situation could be different since such anisotro-

py could "mix" the spin and chirality degrees of freedom
which were separated by symmetry in a fully isotropic
case. Then, the chiral-glass transition, which is hidden in

the chirality in the absence of magnetic anisotropy, might
manifest itself in the divergence of the conventional spin-

glass susceptibility through the coupling between the spin

and chirality generated by the weak magnetic anisotropy.
Note that such a picture can immediately explain the

reason why Heisenberg-to-Ising crossover is not observed
in experiments, because even in a fully isotropic case an
"Ising-like" behavior already exists over a wide tempera-
ture range but only hidden in the chirality. As one
switches on the magnetic anisotropy D, the amplitude of
the Ising-like singularity in the nonlinear susceptibility
would increase from zero. If the chiral ordering in an iso-

tropic system takes place at a finite temperature, the
transition temperature Tqq; in the presence of weak mag-
netic anisotropy would behave as Tst;(D) Ts&;(0) & 0
as D 0, awhile if d=3 is just at the LCD of the chiral
component, it would behave as Tqq;(D) tx J/[In(J/D)] '~ .
The predicted anisotropy dependence of Tsq; is distinct
from the ones given in Ref. [7], and may be testable by

careful experiments or numerical simulations.
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