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Fluctuations of Vortices in Layered High-T, Superconductors
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The temperature T, of spontaneous creation of vortex lines in Josephson coupled layered supercon-
ductors is obtained by taking into account the entropy contribution to the free energy due to thermal
distortions. For Bi- and Tl-based high-T, superconductors and superlattices, the superconducting
critical temperature T, lies noticeably below the mean-fiel transition temperature T,o (T,o —T, 4
K or more). The contribution of thermal distortions to the free energy causes significant changes in
the temperature and 6eld dependences of magnetization below T, seen in Bi compounds.

PACS numbers: 74.60.ae

The importance of topological excitations in the ther-
modynamics of two-dimensional (2D) magnets and su-
perconductors was first discussed by Berezinskii and
Kosterlitz and Thouless [1]; for a review see [2]. Above
the Kosterlitz-Thouless (KT) transition temperature
TKT, which lies below the mean-field transition tempera-
ture T,p, thermally induced free vortices are present in 2D
superconductors giving rise to dissipation and persistent-
current decay. The spontaneous creation of free vortices
above TKT occurs due to the entropy contribution to the
free energy Il = s —Ta, where s = ($2pd/16ir A ) ln(R/()
and cr = in(Rz/(z) are the vortex energy and its en-

tropy (Pp is the flux quantum, A is the London penetra-
tion depth, ( is the coherence length, n R2 and d are the
system area and thickness). Above TKT, which is given
implicitly by

Pp2d

327r2A2(T)'

the free energy is negative, and spontaneous creation of
vortices is favorable.

Generalizations of the KT approach to layered (but
still three-dimensional) high-T, superconductors [3—5]
were stimulated by experiments that show the KT seal-
ing behavior of resistivity; Bi-2:2:1:2 and superlattices
YBaCuO/PrBaCuO are perhaps the best example (see
review [6] and references therein). The idea behind the
generalizations was brought about by the observation
that in the absence of interlayer superconducting cou-
pling, 2D vortices of different layers interact only via the
magnetic field, which provides the same logarithmic de-
pendence of the vortex energy e on the sample size as
in 2D superconductors [5, 7]. This made feasible the KT
transition [3—5], i.e. , spontaneous creation of 2D vortices
and antivortices within the same layer above the tem-
perature obtained by solving Eq. (1) with d replaced
by the interlayer distance s. However, even in the case
of weak Josephson coupling [8], e increases linearly with
R [9], while the entropy o of a 2D vortex still changes
only logarithmicaHy. In these circumstances, thermally
induced spontaneous creation of free 2D vortices (in the

low concentration limit) is virtually impossible.
In the following, taking into account the entropy con-

tribution to the free energy due to thermal distortions
of vortices, we show that thermally induced spontaneous
creation of vortex lines should occur in Josephson coupled
layered materials above some temperature T, ( T,p. We
estimate the difference T,p T, to be—as high as 5—10 K for
Bi- and Tl-based high-T, compounds and superlattices.
We also show that in highly anisotropic superconduc-
tors, the entropy contribution to the free energy cannot
be neglected in a broad temperature domain below T, .
This causes the field and temperature dependence of the
magnetization M to deviate from the standard London
behavior, as observed in Bi-2:2:1:2[10,11] and Bi-2:2:2:3
[12].

Let us consider a lattice of vortices in a magnetic field
H « H,z(T) applied perpendicular to the layers; H,2(T)
is the corresponding upper critical field. We introduce
the induction B and denote the distortions of 2D vortices
from their equilibrium positions by u(n, r„), where r„ is
the 2D coordinate of the vortex pancake v in the layer
n, u = (u„u„), r = (z, y). This description implies that
vortex lines within the Lawrence-Doniach (LD) approach
are, in fact, correlated stacks of 2D vortices rather than
continuous lines. For the undistorted lattice, the stacks
are situated along straight lines. The very concept of
correlated stacks of pancakes assumes that distortions
within a line do not exceed the interline distance:

([u(n, r, ) —u(n + 1, r„)] ) & Pp/B,

where ( . ) stands for thermodynamic averaging. Also,
we assume that the Josephson coupling between pancakes
in different layers is strong in comparison with their elec-
tromagnetic interaction: Ag (( A~t, . Here Ag = ps is the
Josephson length, p = A, /A b is the anisotropy ratio, A, b

and A, are the penetration depths. [Under this condition,
vortex tines (rather than weakly correlated 2D pancakes)
are spontaneously created above the critical temperature
T..]

In the following we use the harmonic approximation in
vortex distortions to obtain the free energy of the mixed
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state in the LD framework. The approximation is valid
provided {[u(n,r ) —u(n+ 1, r )] ) « A&, we check a
posteriori that this condition is fulfilled at all relevant
temperatures and fields. The free energy density func-
tional in terms of B and u(n, r ) is

lattice:

Fp(B) =
z (lnr+0. 5), B 0,

Bgp
167t 2p2b (4)

P = Fp(B) + E,i(B,u(n, r )), (3)
Here rl is a parameter of the order unity, K = A b/( b,

where Fp(B) is the free energy density of the undistorted and the term B /8~ (irrelevant here) is omitted in Eq.
(5). The term E,i represents the elastic energy density:

1

28

dk

(2m)
—) (cl,k Pl, ,~+ cssk PY,~ + b,~c44Q )u, (q, k)u*(q, k) . (6)

Here k = (k, k„), i,j = z, y, css, cL„and c44 are the
shear, bulk, and tilt moduli, and P~,~

= k, k~/ kzand
Pz, ;i = b,z

—Pl, ,~ are longitudinal and transverse pro-
jection operators [13]. Further, Qz = 2(1 —cosq)/s and
u(q, k) is the Fourier component of distortions; the in-
tegration over k is performed in the region kz & kpz ——

4mB/Pp. The elastic moduli of a Josephson coupled sys-
tem ((,«s) with ( b«Ag«A b (moderate anisotropy)
have been evaluated in Ref. [14]:

(.b'

(8~A b)' '
2(4~A, )'

t tex. The line energy of a single vortex e(T) renormalized
by thermal fiuctuations has been discussed in Refs. [4,
15]; here we obtain

32~TKzA2

(»)
Above a temperature T, defined by e(T, ) = 0, the free
energy of a single vortex is negative. In other words,
spontaneous creation of vortex lines becomes possible at
T & T, . Thus we have for T,

+2~2

4vr(1+ Azkz + Az Qz)
'

(7)
f(T.) = ( /(. )'

( )2{inr + 0.5) f{T,)o.n ln(Ag/( b)
'

f(T) = /ps/32vr TA b(T). (14)
The main contribution of thermal distortions to the free
energy comes from large Q 1/s and k kp.

We now evaluate the statistical sum

1nZ=) ln

q, k

du(q, k)kpz f
4mzo. s(zb ( T p

(8)

The elementary phase area for the variable u(n, r„) is
nm( b, the area of the normal core (o. is a parameter of the
order unity). In other words, similar to the Kosterlitz-
Thouless theory (see [2]), we consider the pancakes as
classical particles of the area ri,7r(zb, the number of dif-
ferent configurations of a pancake within the layer is

I du~du„/o. ir(,b. Performing the integration over u(q, k)
and summation over (q, k), we obtain the free energy
density F(B,T) = Fp(B, T) + Fqh(B, T):

TB 16x~eTrc2
F&h = — ln, B && B...

with the crossover field

4p I„Az/( b

4/ln(Ag/( b)

The limit B —+ 0 yields the free energy of a single vor-

For Ag « A~b(0) the right-hand side of (13) is smaller
than unity, and therefore T, lies above T*, given by
f(T') = 1. Assuming T,p —T, « T,p and taking
A, b(T) = 0.7A~b(0)/Qt, t = 1 —T/T, p, we obtain

t'(A&/(. b)'
2(l r.n+ 0.5) o,vr ln(Aq/( b)

'

t' = 167r T,pA b(0)//ps.

(15)

(16)

In the absence of applied Beld, in the temperature in-
terval T, & T & T,p, the superconducting order param-
eter is nonzero, and the quasiparticle density of states
has a gap or a pseudogap which can be probed by NMR
Knight shiR, tunneling, or optical measurements. The
presence of thermally induced vortex and antivortex lines
in this temperature interval (in zero applied field) re-

sults in Buctuations of the magnetic Beld in the sam-
ple. The amplitude of these Huctuations is of the order
ppt, /4vrA2b(0) (= 1 Oe). They can be, in principle, de-
tected using muon spin rotation, neutron scattering, or
the Hall probe technique. The thermally induced vortex
and antivortex lines give rise to dissipative properties at
temperatures above T, similar to the case of a 2D super-
conductor above TK~, the resistivity and lower critical
field H, i(T) became zero at T, rather than at T,p. One
can speculate that above a certain temperature, the lines
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will dissociate into free 2D vortices causing the KT scal-

ing behavior of resistivity.
Below T„ in the presence of an applied field we can cal-

culate the magnetization renormalized by thermal fluc-

tuations: M = B(—Fp + Fth)/BB. The results for M
so obtained are certainly valid below the melting tem-
perature T~ of the vortex lattice. %'e argue that in a
dense vortex liquid, B » pp/Azb, they are valid above

T~ as well. Actually, I'o depends weakly on the lattice
structure due to the long-range interaction of vortices in
a dense vortex phase; only the factor g under the loga-
rithm of Eq. (5) differs slightly for difFerent lattices. The
contribution of thermal distortions to the free energy is
determined mainly by the short wave distortions which
depend on the short-range order in the system of vortex
lines (it is the long-range order that changes at the melt-

ing transition, while the short-range order does not). The
absence of any noticeable anomaly in the experimental T
dependence of M [10—12] confirms this picture. Thus the
discussion of the magnetization which follows is irrespec-
tive of whether the lattice is melted or not.

Let us consider the magnetization changes due to the
contribution of thermal distortions to the free energy. It
is seen from Eqs. (9) and (10) that Mth = BFth/BB—is
linear in ln B for B » B„,whereas it is B independent
for B « B„.Hence, the slope of M vs ln 8 changes in
the vicinity of B«'.

(BMI
BlnB) ~((~

t'BM I T
(BlnB) z»z /ps

(17)

Therefore, it is possible to determine s from the field
dependence of magnetization. Moreover, the value of the
crossover field B„provides information on the Josephson
length Aq and, hence, on the anisotropy parameter p.
For Bi-2:2:1:2with anisotropy parameter p 55 [16] the
value B„should be about 0.1 T.

For fields B„«B « H,2(T), we have

T
~(T) 1

rlpp
1

16vrTlr

/ps 2vre(z&B ngpsBy e
(18)

M(T') = —ln
ps e

(2o)

Thus all M(T) curves for different B » B„cross at
T = T*, the feature clearly seen in the data on Bi-
2:2:1:2 [10—12]. Theoretical curves M(T) for different
fields along with the data [10] are shown in Fig. 1. Above
T* the magnetization value, —M, for fields B )& B„
increases logarithmically with field, while below T* it
behaves "normally, " i.e., decreases logarithmically with

BM T ( T Pp

B 111B /ps I, T' 167rzAz (0)

It is worth noting that M is field independent at T = T'.

0I'.
4 i

I I I I I l I I I
i

I I I t I I I I I
i

I I I I I I I I I
i

I I I I I t I I I
i

I I I I I I I t I

70 75 80 85 90 95

T(K)
PIG. 1. The calculated magnetization M(T) for difFerent

fields and the experimental data [10] for Bi-2:2:1:2.

B. This peculiar behavior is clearly seen in the data
[10—12]. The experimental data for the T dependence
of BM/BlnB in fields B„«B « H,z(T) [10] are in

agreement with Eq. (19) which makes it possible to de-
termine the system parameters. For the sample of Bi-
2 2:1 2 [10] with T'=88.3 K we obtain A i, (0) = 1500 A. ,

(,b(0)/~rl = 17 A, and T,p=95 K. For another sample of
the same material ll] with T'=87.2 K the parameters
are A~b(0) = 1700, ( i, (0)/~q = 15 A, and T,p=96 K.
Evaluating these parameters we set lnrln/+e = 1 [17]
and s = 15 A. The parameters obtained were used to
calculate theoretical curves in Fig. 1. For Bi-2:2:1:2we
estimate T, —92 K.

The results obtained are valid provided the Joseph-
son model for the interlayer coupling can be applied. In
particular, this implies that both T, and T' should be
situated in the temperature interval where (,(T) « s.
Using Eq. (16) we see that this is fulfilled for sufficiently
strong anisotropies: pz » ppz

——pp2/87rzezsT, p. For high-

T, materials we estimate ppz —100. Hence, our theory
applies to Bi and Tl compounds and superlattices; for
YBa2Cu307 the above condition is not satisfied [18]. We
note also that due to the condition (2) we cannot apply
our model well above T*. This condition is fulfilled if
B && B„;when B )& B„,we have in addition a temper-
ature restriction vr f(T) & ln(AJB/Pp) If this co.ndition
is violated one may expect the vortex lines to dissociate
into an ensemble of 2D pancakes in which vortex lines
can no longer be defined.

Thus, in layered superconductors with moderate
anisotropy ( i, « Aq « A b the spontaneous creation
of vortex and antivortex lines should occur above T„
which divers considerably from T,o. If H = 0 and
T, ( T ( T,o, a liquid phase of vortex and antivortex
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lines should exist similar to what occurs above the KT
transition in 2D superconductors. The substantial dif-
ference between this phase and the KT "plasma" of 2D
vortices is that, in the Josephson coupled layered mate-
rials, the thermally activated topological excitations are
vortex lines. The Beld and temperature dependences of
magnetization below T, are strongly afFected by the con-
tribution of thermal distortions to the free energy. The
characteristic point here is T' where all M(T) curves for
different fixed fields B & B„intersect.

In conclusion we note that spontaneous creation of vor-
tex lines above T, is not an exclusive property of 3oseph-
son coupled layered superconductors. It should also oc-
cur in anisotropic 3D materials (e.g. , in Y-1:2:3and Y-
1:2:4), but there T, is closer to T,o, the situation analo-

gous to the TK~ for thick superconducting films [18].
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