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Double Peaks in the Dissipation of Vibrating Superconductors
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The two distinct peaks observed as a function of temperature in the dissipation of vibrating su-

perconducting slabs in a tilted magnetic Geld are explained by thermally activated flux diffusion
across the thickness and width (or length) of the slab. These conspicuous peaks thus do not neces

sarily indicate multiple phase transitions of the flux-line lattice as proposed previously. Anisotropic
mobility of the flux lines may increase or decrease the separation of the peaks.

PACS numbers: 74.60.Ec, 62.40.+i, 74.60.Ge

Recently two distinct peaks in the dissipated power as
a function of temperature T have been observed in su-

perconductors performing tilt vibrations [1—4] or put into
a magnetic ac field [5,6]. The double peak was observed
only when the applied dc field 8 (ranging from 0.1 to
10 T) was not along one of the symmetry axes of the
specimen; elsewhere one of the peaks disappeared. This
conspicuous phenomenon was reported for the high-T,
superconductors (HTSC) Y-Ba-Cu-0 [6] and Bi-Sr-Ca-
Cu-0 [1,5], for an organic superconductor [2], for Nb and
NbSez [3], and for artificially layered Mo-Ge films [4].
The dissipation peaks in Refs. [1,4—6] were interpreted
as evidence for multiple phase transitions like melting of
the flux-line lattice (FLL), melting, decoupling, or de-

pinning of the two-dimensional lattice of pancake vor-
tices [7] in layered HTSC, or the formation of vortex
kinks [8]. These explanations relate the peaks to ma-
terial properties of the superconductor, in particular to
its pronounced anisotropy or layered structure.

In this paper I show that even for isotronic supercon-
ductors containing a FLL without any phase transition
a double peak of geometric origin is expected when the
specimen is a slab or disk. Here the two peaks corre-
spond to flux motion along the thickness and width of
the superconductor, respectively, as already suggested
in [2]. In the general case the observed double peak is
the combined effect of both the specimen shape and the
anisotropy or layered structure.

In order to quantify this statement I consider a super-
conducting slab with length l » width to » thickness
d » penetration depth A,b, filling the space ~z~ & d/2,
~y] & tu/2, ~z] & l/2. Various relaxation times r (i.e.,
penetration times for magnetic perturbations) result then
for various diffusion modes of the FLL along the thick-
ness, width, or length of the slab, e.g. , r = dz/vr2D,
md/sr~ D, or lsd/t07rzD When the t. emperature T or ap-
plied field 8 is swept, the flux diffusivity D(T, 8) changes
and a dissipation peak occurs whenever one of the values
1/r coincides with the circular frequency u of the tilt
vibration or of the applied ac field, provided the corre-
sponding diffusion mode is excited in the given geometry.
If B is along x, y, or z, then only one difFusion mode is
excited and only one peak occurs.

In HTSC the observed dissipation peaks can be quite
sharp since, due to thermally activated depinning, the
flux difFusivity depends strongly on T and typically also
on B. The peaks typically occur in the region of ther-
mally assisted flux flow (TAFF) [9] where the resistivity

p = pTAFF(T, B) is Ohmic and exhibits Arrhenius be-
havior, p/po oc D oc 1/r oc exp[—U(T, B)/ksT]. At
lower T, in the region of strong pinning and slow flux
creep, the resistivity is highly nonlinear and the dissipa-
tion at small amplitudes is very weak. As T is increased,
some vortices depin and the dissipation reaches a maxi-
mum when r(T, 8) = 1/co. Above the peak, the dissipa-
tion decreases again since the vortices are almost com-
pletely depinned and usual flux flow (FF) occurs [10,11].
In general, the dissipation is linear only in the flux-flow

regime or at extremely small amplitudes; near and below
the peak, depinning processes cause additional hysteretic
damping and the dissipation becomes nonlinear [12,13]
and yields an amplitude-dependent attenuation. In con-
ventional (low T,) superc-onductors a similar peak occurs
at constant T when 8 approaches the upper critical field

8,2 where the pinning strength drops to zero [12].
The thermally assisted diffusivity D(T, 8) is related

to the TAFF resistivity p(T, 8) and the TAFF viscosity
(drag) of the FLL per unit volume rl = STAFF(T, 8) by
D = p/po = B~/Isorl For anis. otropic superconductors
D and q depend on the orientation B of the flux lines
and on the direction v of flux motion, which is always

perpendicular to B. One has D+ = 8 /po g.
The theory of superconductors performing flexural vi-

bration (cantilevered reed [12,14]) or tilt vibration (spec-
imen glued on a silicon [13] or polymer [2] tongue) was
developed in [12,14,15]. For a review see [16]. In the
following it is assumed that the dc magnetization is neg-
ligible; i.e., the internal field B approximately equals the
applied field. Periodic tilting of a specimen by a small
angle P(t) = Pocoscot in a dc field 8 is equivalent to
applying an ac field Bs,(t) = Bcb(t) oriented perpendic-
ular to B and to the rotational axis. For a slab with
Bs,(t) = 8, cos cot parallel to its surface in the TAFF and
FF regions, this ac field (or the vortex tilting) penetrates
the specimen by linear diffusion [9—11,15—18] according
to B(r, t) = DV2B, causing a time and space averaged
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linear dissipation per unit volume

P = (~B.'/2~o) l~"(~) I.

Here p" is the imaginary part of the ac susceptibility

p(a) = p'+ ili" = tanh(u)/u [15] or explicitly [9,17]

(sinhv+ sinv) —i(sinhv —sinv)
p =

v(coshv + cosv)
(2)

with u = v/(1 —i,), v = (urd2/2D) /z = d/b, and 6 the
skin depth. This result applies to both the penetration
of compressional and tilt waves of the FLL [18]. The
dissipation (1) and (2) has a maximum as a function of v

or D at v = v~» ——2 2542) where p p~@x:0 41723.
The damping peak occurs thus when d/26 = 0.887 —1

and u7 = 0.97 = 1 with r = d2/ir2D; this is expected
intuitively.

Results for six possible geometries and modes are sum-

marized in Table I. Each of these geometries was real-
ized in at least one of the experiments [1—6]: (1) B~]x
(perpendicular field), (2) B[[z (longitudinal field), and

(3) B = (Bcos 8, 0, Bsin 8) (oblique field). In cases 1—3
the periodic rotation (tilt vibration) is about the y axis
(along the width iv). Three more cases are obtained when

the slab rotates about the z axis (along the length l): (4)
B[[x (perpendicular field), (5) B[~y (field along the slab
width), and (6) B = (Bcos 8, B sin 8, 0). Cases with B
not perpendicular to the rotation axis are not considered
here. If B is exactly parallel to the rotation axis, no

dissipation should be observed at all [13].
In each of the oblique-Geld cases 3 and 6 three diffusion

modes occur, corresponding to field penetration along x,
y, and z. Cases 1,2 and 4,5 follow as special cases from

cases 3 and 6, respectively. In Table I the symbol D de-

notes the in general anisotropic fiux diffusivity D , with-
B and v given by columns 3 and 7; explicit expressions

for the anisotropic D- are listed in the last column. The
relaxation times and dissipation peaks for the various
modes were obtained by the following arguments.

In case 1 (Fig. 1, middle) the ac field B„=B,,
= PB penetrates according to the diffusion equation B,

D 0 B,/Bz . Thus Eqs. (1) and (2) apply and
one gets for the maximum dissipation P, = Pi
= 0.41723($2)~B /2po and for the diffusivity where
this maximum occurs D~,„=Di ——(ud /2)(1/2. 254)

0.0984ad, where (P2) is the oscillating tilt angle
squared and averaged over time (and in the case of fiex-
ural vibrations also over the specimen). The relaxation
time for the fundamental diffusion mode with wavelength
2d or If" = ir/d is ri = 1/k2D = d2/7r2D.

In case 2 (Fig. 1, top) the ac field B~, = B, = PB
is perpendicular to the slab and thus causes large demag-
netizing effects. At large a, the ac field is completely
shielded from the slab's interior and, therefore, has to
"How" around the slab. The magnetic energy of the re-
sulting inhomogeneous ac field outside the slab is [12]
(xiv2/4)B2, /2@ii = &$2Ti per unit length along z, where
Ti = (priv /4)B2/po is a force which tends to realign the
FLs along B][z. Denoting the FL displacements ~~z by
u(z, t) we get an elastic force density Ti 8 u/Bz which is
counteracted by the viscous force density —ildivu(z, t)
In this mode, g = g' is the viscosity of a FLL ori-
ented along z and moving along x. The tilting of the
FLs by an angle P starts at the ends of the slab at
z = jl/2 and difFuses into the middle, z = 0, accord-

ing to ii = D,g 8 u/Bz with an effective "difFusivity"

D,ir = Ti/rldvi = 7ru)B /4rldlip —— (vrvi/4d)D &) D
and a relaxation time r2 = l /n Draff = 4l d/Tl ivDi,

where D = D'. The position D, = Dq and height
P,„=P2 of the dissipation peak is thus again obtained
from Eqs. (1) and (2). As compared to mode 1, the result-

ing P2 = 0.41723(P )(uBz/2po)xvi/4d is enhanced, and

TABLE I. Characteristics and results for various geometries and diffusion modes of a vibrating superconducting slab with

dimensions [z[ & l/2, [y] & to/2, [x] & d/2, and l )& iU &) d in a dc magnetic field B B= 100 .means B = 1, B„=0, B, = 0,
etc. ; 8 = sin 8, C = cos 8, 8 is the angle between B and the slab normal x; Pi = 0.417(P )uB /2lio, Pq = (m.iv/4d)Pi

Case
or

mode

Axis
of

rotation B B,
Penetrating ac field
Oriented Moving

along along

Flux-line
velocity

V

Relaxation time
x diffusivity

~~ D

Maximum
dissipation

Pmax

D/D;
for
cf[x

1
2

3.1
3.2
3.3

100
001
COS
COS
COS

001
100

SOC
SOC
SOC

001
100

SOC
SOC
010

d2

4l d/'iiv'
d2

4l'd/~vi
= vied/i

'

Pa
P2

PjC
PS

=PS

1

1/1
tg

1/~e

4
5

6.1
6.2
6.3

100
010
CSO
CSO
CSO

010
100

SCO
SCO
SCO

010
100

SCO
SCO
001

d2

~ lUd

4l d/vriu

—P2
PiC

S2

P2S

1

i/1
tg

1/ee
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FIG. 1. Visualization of two relaxation modes occurring

in a superconducting slab which performs tilt vibrations in
a tilted dc field B. Depicted is the case where the tilt of
B (about the y axis) is suddenly increased by a small angle
P. The surface shielding currents occurring immediately after
this tilt are shown as circles with dots and crosses. The surface
current pattern on both flat sides is depicted at the right.
The figures at the left show how the deformation of the flux-
line lattice proceeds. Top: B~~z, longitudinal mode (mode
2 of Table I). The flux-line tilt by an angle P diffuses from
the ends (z = &I/O) to the middle of the slab in a time ~~

I d/m mD. Middle: B~~x, perpendicular mode (mode
1 of Table I). The short flux lines curve and straighten again in
a time 7q = ~i = d /n D Bottom: B t. ilted away from z by
an angle 8, which is suddenly increased, 8 ~ 8+ P. In a first,
fast relaxation mode the flux lines curve and straighten across
the slab thickness to realign along B (mode 3.1, like mode 1).
This small additional tilt increases the flux density, which
thus has to expand in a second, slower mode, either along
z (mode 3.2, depicted here) or along y (mode 3.3, typically
faster). The dashed lines indicate flux lines before relaxation.

Ds = 0.0984al (4d/mio) is reduced by a factor neo/4d
due to surface shielding currents.

In the oblique-field case 3 (Fig. 1, bottom) both modes
1 and 2 occur: When the slab is tilted by an addi-
tional angle P (( 1 the (already tilted) flux lines first
form an S curve and then stretch until they are again
parallel to the applied field; this tilt is equivalent to
the penetration of B,, with a short relaxation time
7s i = ~i = d /x D (mode 3.1). Such a tilt slightly
increases (or decreases) the flux density; the FLL will
thus expand (or contract) in a second, slower mode,
which means a difFusion of B ~ . This second relax-
ation can occur along the slab length t (mode 3.2) in
a time ~s 2 = r2 = 4l d/vr io. The corresponding lin-

ear dissipation peaks are reduced by factors cos~ 8 and

sin 8, since B„,= PB cos8, thus Ps i ——Pi cos 8, and

B~c z = QB slil 8, thus Ps 2 = P2 sin
However, the relaxation of B, can also occur along

the width m of the slab. This novel mode 3.3 has no
equivalent in the "pure" case 1 or 2 where there is ei-
ther no driving force (if 8 = vr/2) or no component B,
(if 8 = 0). For a large range of angles [cos8~ & io/I,
mode 3.3 will be faster than mode 3.2 and thus causes
the observed dissipation peak. (After B«z has pene-
trated along y it need no longer penetrate along z.) One
thus gets at lower temperature T a peak of height P3 $

when rs i —I/u, and at higher T a peak of height Ps 3
when rs 3 I/cu. Only in almost longitudinal geometry,
for

~

cos 8~ ( io/t, the second peak is caused by mode 3.2,
with height Ps 2

—P3.3 and position I/ur —rs q. At the
crossover [cos8~ = io/t, the heights and positions of the
peaks 3.2 and 3.3 coincide.

The theory of mode 3.3 (and of 6.2 below) is more dif-

ficult than the theory of the remaining, difFusive modes.
One has to solve the problem of the penetration of a
transversal magnetic field into an infinite slab of width
io, thickness d, and resistivity p, described by the inte-
gral equation (29) of Ref. [15]. Here I estimate the relax-
ation time rs s and dissipation P(u) 2Ps /s(I+a 7s s)
by considering a sudden increase of the perpendicular
field component B ~ B + Bi and assuming a com-
pressional motion of the FLL with velocity v Ix ~y~ held
constant over a time interval w3 3 required for full pene-
tration. Prom geometry one gets (v2) = b /3~s s, where

6 = (m/2)Bi /B is the flux-line displacement ~[x at the
slab edge ~y~

= ut/2. Equating the total dissipated en-

ergy Ud;» ——rI(v )ws stood to the . energy stored in the
stray field before this relaxes, Us, ~d = (Bi2/po)fzur2/4
[12,15], and noting that Bz = Bcos 8 and B /porI = D,
one obtains rs s = ivd/3vrDcos 8, in agreement with
the estimate of [15], which gave, for 8 = 0, rs 3
nud/x D with c —1. Assuming further an approxi-
mate Debye susceptibility p(~) = 1/(1 + icur), which

gives ~p~,„~ = ~p"(u = I/~)~ = 1/2, and an enhance-
ment of the magnetic energy in (1) by the "stray-field
factor" vrio/4d [12,15], we get for the maximum dissipa-
tion Ps 3 = (P )uB sin 8/4po = Pz sin 8.

Finally, I consider the modes where the slab rotates
about its long axis (z axis). In the perpendicular-field
case 4 (B~~x) one has the same 7 and P „as in case 1.
The parallel-field case 5 (B~~y) now corresponds to the
more complicated mode 3.3 above; one has 7s = md/n 2D
and P5 = P2. In the oblique-field case 6 there are again
three modes: In the rapid mode 6.1, B@zy difFuses along
the thickness d, like in mode 3.1, with ~6 g —73 ] —7y
= d2/n2D. In the slower .mode 6.2, B, difFuses along
the width ur, like in mode 5. I find Ts 2 = 7s used/7r D
for all 0, and P62 ——P5 sin 8. Finally, mode 6.3 with
B« ~ diffusing along the length t is always much slower
than mode 6.2, ~s s = (l/iu) Ts 2, and is thus irrelevant.
The observed double peak in this geometry thus corre-
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sponds to modes 6.1 and 6.2.
The above discussion assumes isotropic flux diffusiv-

ity. If the anisotropic diffusivities relevant in mode 3.2
or mode 6.3 were larger by a factor l /m than the diffu-
sivities of the competing (and typically faster) modes 3.3
and 6.2, then the longitudinal modes 3.2 and 6.3 would
be observed rather than the transverse modes 3.3 and 6.2.
However, in experiments on HTSC so far c-oriented slabs
were used; i.e. , the crystalline c axis was along x. In this
situation the flux-flow [19] and TAFF diffusivities of the
short flux lines (Dsz and D,*) are much larger than those
of the long flux lines moving in the c direction (D and
D"). Therefore, if in c-oriented HTSC the anisotropy of
D is accounted for, the rapid modes (along the thickness)
become even faster, and the slow modes (along width or
length) slower; the double peak thus splits wider than in
the isotropic case.

Explicit expressions for the anisotropic TAFF diffu-

sivity may be obtained from the highly useful scal-
ing prescription [20]. This concept works for uniaxi-
ally arusotropic London or Ginzburg-Landau (GL) su-

perconductors if length scales ) A, are unimportant or
if B=const may be assumed. Any anisotropic property
of the HTSC, even with pinning, is then obtained by a
simple transformation from the corresponding property
of the isotropic superconductor. This idea also gives the
flux-flow and TAFF viscosities. If B forms an angle 8
with the c axis one finds rtq(8) = rj/ss if the flux lines
move in the B cplane, -and rjz(8) = ries if the flux lines
move perpendicular to the B cplane [21]-. Here ri = rib

= tl' (for

flux flow

TAFF), ssz——I' zsin 8+cosz 8, and
I = A, /A b = (m, /m b) )& 1 is the anisotropy ratio
Thus, rjb. rib. rl, = 1:I';I' or Db.'Db. D, = I:I/I':I/I'2.
This result differs slightly from the flux-flow anisotropy
of [19], rib . rib: ri, = 1:4I': 31", because in the time-de-
pendent GL theory implicitly used in [20] the anisotropies
of the resistivity and mass are not independent as as-
sumed in [19]. The anisotropic flux diffusivities of the
various modes are listed in the last column of Table I for
slabs with x~[c.

In conclusion, the relaxation times and linear dissipa-
tion peaks were obtained for the flux-motion modes oc-
curring in slabs of isotropic or anisotropic superconduc-
tors which vibrate or are put into a weak ac field. More
work remains to be done if the layered structure of the
HTSC or the amplitude dependence become important.
These problems are presently under investigation.
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