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Universal Conductance Fluctuations in the Presence of Landau Quantization
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We generalize the analytic theory of universal conductance fluctuations to systems with Landau-level
quantization. Results are valid to leading order in 1/g (g is conductance) but for arbitrary magnetic
field. We show that the field only enters through the diffusion constant and cancels in the variance of g,
which hence remains -(e 2/h) ~ over the entire range of magnetic fields. However, the correlation range
8, does vary with field in good agreement with experiments.

PACS numbers: 72.10.Bg, 72.20.My, 73.20.Fz

Although the theory of mesoscopic fluctuation phenom-
ena has been well developed in recent years, very little
work has been done relating to two-dimensional conduc-
tors in high magnetic field, a system of great experimen-
tal interest. It has been observed that resistance fluctua-
tions do occur in such devices as a function of magnetic
field up to arbitrarily large fields [1,2]. At intermediate
fields they are superimposed on the Shubnikov-de Haas
oscillations (which indicate the presence of strong Lan-
dau quantization), and at higher fields (typically 8 & 4
T) they occur in transition regions between plateaus in

p~i and zeros in p„„. It has also been widely observed
[1,2] that 8„ the typical field scale of the fluctuations
(spacing of the features), increases with magnetic field.
The transport fluctuations of two- and three-dimensional
conductors in fields which are weak enough that the cy-
clotron radius r, is larger than elastic mean free path I is
well described by the conventional theory of universal
conductance fluctuations (UCF) [3,4] based on perturba-
tion theory in (kfl) . In this regime one finds that the
variance of the conductance Var(g) for a phase-coherent
conductor is —(e /h) (independent of the degree of dis-
order) and the spacing of the features is independent of
8. However, the regime of strong Landau-level (LL)
quantization encountered in 2D conductors is not de-
scribed by this theory, which assumes r, »I ro, r«1
(although some numerical results exist [5]). The experi-
ments cited above violate this condition by as much as 2
orders of magnitude, and show significant differences
from the standard behavior. It is thus an open question
which if any aspects of the conventional theory survive
strong LL quantization.

Here we present results from a perturbative analytic
treatment of the conductance fluctuations of two-dimen-
sional systems in high magnetic field which finds that as
long as the motion at large distances is diffusive Var(g)
remains independent of the degree of disorder and mag-
netic field. Our results are based on the self-consistent
Born approximation (SCBA) introduced by Ando and
Uemura [6], and shown by Carra, Chalker, and Benedict
[7] to be the leading term in a systematic expansion in
1/N (where N indexes the LL at ef) when the disordered
potential is short ranged. Generalizing the results of Car-
ra, Chalker, and Benedict we find the SCBA to generate

the leading term in an expansion in 1/g, where g-N for
r, « I [6] and g —kf1 for I«r, . Our results shed light on

previous high-field calculations of the weak localization
[7,8] and Coulomb [9] corrections to g in the unitary en-

semble. In both cases the form of the quantum interfer-
ence correction was found to be independent of the
strength of the LL splitting but the origin of this field in-

dependence was unclear. Here we show that within the
SCBA quite generally the field only enters through a 8-
dependent diff'usion constant. A consequence is that
quantities such as the conductance fluctuations and in-

teraction correction which are independent of the
difl'usion constant are strictly independent of field (once
time-reversal symmetry is broken). Because the correla-
tion ranges E, and 8, which determine the scale of the
fluctuations do depend on the diffusion constant, they are
found to vary with magnetic field. We evaluate the field

dependence of B, below and compare it to the experi-
ments of Ref. [2], finding good agreement.

As in the standard theory [3,4], the leading perturba-
tive contribution to Var(g) neglects localization effects;
in addition, it is known that perturbation theory cannot
describe the extended states in the center of the LL at
infinite system size [10]. However, for mesoscopic sys-

tems (in which the localization length often may exceed
the system dimensions) we expect our results to give a
reasonable description of the behavior near the center of
the LL of a mesoscopic two-dimensional electron gas.
Moreover, our generalization of the perturbative ap-
proach should allow extension of the calculations of
mesoscopic fluctuations of other physical quantities to the
regime co,i )) l.

We study a model of noninteracting electrons confined
to two dimensions moving in a uniform perpendicular
magnetic field under the influence of a weak short-range
disordered potential V(r). We take V(r) to have zero
mean value and white-noise statistics:

(V(r) V(r')) =c;u'b(r —r'),

where c; is the impurity density and u is the scattering
strength. In the SCBA for this model, the self-energy is
also short ranged, X(r,r') =c;u G(r, r')b(r —r'), where G
is the full disorder-averaged one-particle Green function.
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Hence G(r, r') satisfies the self-consistent equation

[E—c;u G(r, r) —Ho]G(r, r') =8(r —r') .

Since on average the system is translationally invariant,
c;u G(r, r,E)=—Z(E) is just a complex function of energy.
It immediately follows that

P„(r,r')

,-0 E E„——X(E) ' (3)

where P„(r,r') is the projection operator onto the nth LL
in real space and E„=(n+ —,

' )/zc0, . P„ is known analyti-
cally [7], but here we need only use the fact that the
modulus of P„decays on the scale of r, =Un+I/2X
[where the magnetic length A, (hc/eB) '/ ] and its phase
p(r, r') (e/hc)A(r) (r —r'). Setting r r' in Eq. (3)
yields a self-consistent equation for Z(E). In the high-
field limit, in which the LL broadening v« @co„the LL
at the Fermi surface dominates in Eq. (3) and G(r, r')
-P~(r, r'), showing G(r, r') has a decay length r, . Set-
ting r r' in Eq. (3) allows one to obtain [6] v

(c;u /2', )'2-(h cv,/z)'/. In the limit 8 0 the
self-consistency condition on G may be neglected to lead-

ing order in (kfl ) ', and Eq. (2) yields G (r, r')
-exp[ —

~r
—r'[/2/]. At intermediate fields Eq. (2) has

no simple analytic solution, nonetheless it is clear that
G(r, r') is always short ranged with decay length roughly
equal to min [r„/].

Mesoscopic quantum interference effects always arise
from long-ranged contributions to the average of the
product of two Green functions: the diguson contribu-
tion, and the Cooperon contribution, which is suppressed
at modest fields and will not be treated here. The
diffuson satisfies

(4)d(r, r') b(r —r')+„dr~do(r, r~)d(r~, r'),

where da(r, r') c;u G+(r, r',X+~)G (r', r,X) and X
denotes all the external parameters such as ef and 8
which may differ between measurements. Equation (4)
can be solved formally in terms of the eigenfunctions

gf(r) and eigenvalues 1 —(J of do defined by

dr'do(r, r')gj(r') (1 —
g )g (r) .

One finds

(s)

=(1-(,')gj(r) . (7)

To see the diffusive behavior of d at long distances we

note that do-G+G is short ranged and expand g(r') in

Eq. (5) around r up to second order to obtain a dif-
ferential equation [11],

' 2

f V ~A(r—) +C(~) g, (r)Io

2 A, c

The constant C(AE) is

C(bE) =c;u „dr'G (r, r', E+AE)G (r', r, E) .

It may be shown [12] directly from Eq. (2) that C(0) =1;
this is a manifestation of the Ward identity [7] which
guarantees that the SCBA is a number-conserving ap-
proximation. An expansion for small LE then yields
C(~) =1 —i(AEzo/lz) where the generalized scatter-
ing rate is I/zo=2lm[X+(E, B)]/A =2nc;u p(sf 8)/6,
and p(sf, B) is the average density of states. The other
constant in Eq. (7) has dimensions of length squared,
with

e 6
g(sf) = — Tr [v„hGv„AG],4' (10)

where v„ is the velocity operator, and AG(ey) -G+(cf)
—G (sf) contains the dependence on the impurity po-

tential. We need to calculate the average of the product
of two such factors evaluated in general at slightly

different values of sf and B. As in the conventional

theory of UCF, this average can be represented diagram-
matically by two conductance bubbles connected by im-

purity lines [3], where the largest contributions come
from diagrams which behave at small momentum as
—(Dozpq 2)

Denote Tr[G v„G'v„j by g, a, b =+, —;a significant
technical complication arises because terms of the type
g"g~ and g"g are not negligible as they are in the
standard theory [4,14]. It is hence convenient to simplify
the terms involving g" before averaging over impurities.

i.e., the length /0 is just the spatial range of the average
Green function. From the explicit form of 6 in the limit

r, « /it is easily found that lo 2r, and zo /z/v at the
center of LL, whereas when I((r, one obtains the famil-
iar result 10 I 2Di, ro r. Hence we define the
field-dependent diffusion constant Do(8) =/)/2zo. If one
sets hE hA 0 in Eq. (7) and Fourier transforms, one
finds gj Dazpq2, and Eq. (6) has the familiar diffusion
pole.

The basic statistical properties of the conductance fluc-
tuations are determined by the correlation function

F(~,58 )= (ISg(cf+~,8+d 8 )bg (ef,8 )),
where bg(ef 8) g(sf 8) g(sf, B). F(0,0) =(bg )
gives Var(g), and the decay width of F(~,0) and
F(O,AB) gives the correlation ranges E, and 8, of the
fluctuations with sf and B. In the present work we re-
strict ourselves to considering two-probe conductance g,
which is roughly speaking the inverse of the sum of the
longitudinal and Hall resistances. For a given impurity
configuration at T=0 this quantity may be written in

operator form [13]as
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where at ~,58 0 we have (J -Dpr pq, with

~
2

J Tr [G v~G G v~G (12)

Although this trace involves the impurity-averaged

+, X+8,X

+, X+dX

(b)

+, X+6,X

(c)

FIG. 1. Diagrams contributing to F(hE,hB). Shaded areas
denote diffusions; cross-hatched areas denote vertex corrections
which arise from nondivergent ladder insertions.

Using the operator identities v„(i/h)[H, x], G —H
I, [x,v, ] i I't /m one finds [14]

g" Tr[G'v G'v„j = —(I/m)Tr[G'j .

Therefore each occurrence of g" may be replaced by a
single Green function without velocity vertices (indicated

by straight lines with a single dot in Fig. 1). Within the
SCBA the leading contributions to F(AE,AB) come from
the diagrams shown in Fig. 1. In the general case the
vertices need to be corrected by nondivergent ladders of
type G'G'. In the low-field limit diagrams 1(c) and 1(d)
are of lower order in (kfl) ' and negligible, but in the
high-field limit they are of order N 'htp, /v and they are
needed to cancel nonuniversal contributions of the same
order from diagrams of the type 1(b).

The particular form of G only affects the diffusion pole
through the constant Ijf(8) 2Dprp. We now indicate
how the dependence on the degree of disorder cancels in

Var(g) at arbitrary field by considering the simplest case
of diagram 1(a). Following Ref. [3] we may treat the
current vertex J(r, r') which connects the two diffusons in

Fig. 1(a) as short ranged since it only involves products
of G, J(r, r') =Jb(r —r'). The identification of the points
r, r' then turns the integration over the two diffusons into
a trace, Tr[d(X+AX)dt(X+hX)j -gj.l(l j. . Diagram
1(a) then yields

2 2

4 e Ii J2g 1

4 L.'

=Ip/h =2Dprp/ft (13)

where we have used the definition of lp in Eq. (8).
The summation of diagrams 1(b)-1(d) gives another

vertex constant which after lengthy algebra is also found
to be proportional to lp [12]. Adding up all diagrams
with correct counting factors we find the full T=O corre-
lation function,

F(AE,AB) =
4 g 4 +—Re 4, (14)e Io 1 1 1

, h, L.' J ~lc, l'

where the dependence on dL', hB comes through the
dependence of the (J of Eq. (7) on these quantities.
Equation (14) is valid at arbitrary field (except for fields
near 8 0 where it is straightforward to include the
Cooperon contribution) as long as the SCBA is a reason-
able approximation. This expression is identical to the
conventional theory which neglects Landau quantization
effects except for the appearance of the generalized field-
dependent scattering coefficients I) and rp To eval. uate
Var(g) one sets AE -AB =0, in which case, as noted
above, one has (J =(Dpr pq ) (Ipq) /4; thus quite gen
erally we see that the vertex constant J-lp cancels the

diffusion pole, eliminating the dependence of Var(g) on
the diffusion constant. The standard analysis [3,4] then
shows that Var(g) =C(e2/h), where the constant C is
independent of magnetic field or sample size. Previous
microscopic calculations had not made clear the origin of
this cancellation and its generality; a similar cancellation
occurs when evaluating the Coulomb correction to the
average conductance in high magnetic field [9,12].

The correlation ranges are obtained from the decay of
Eq. (14) as a function of 58 and ~ [3]. For I;„&&L„
one finds E, hDp(B)//L„ the standard result with D

Dp(8); however, for I;„«L„one finds (neglecting en-

ergy averaging) E,—h Dp(B)/I;2 =h/r;„and the 8
dependence of the diffusion constant cancels out of E, (of
course r;„may still have 8 dependence). On the other
hand, we find that the magnetic field correlation length
satisfies B,-(hc/e)/I;„. At high fields, if r;„ is only
weakly field dependent, this implies 8,—1/Dp(8)—1/r,2v-B I; i.e., 8, increases with 8 as observed ex-
perimentally [1,2]. A detailed comparison to the data of
Ref. [2] is given in Fig. 2 using the approximation that
r;„ is independent of 8, but calculating Dp(8) exactly
from Eqs. (3) and (8).

Although this theory contains the conventional theory
of UCF as a special case, it has significant limitations

Green function (not G for a given sample), within the
SCBA we still have [E—X —(E)—Hp]G—= (Zp—)G =1,
and v ( I/h )[Zp, x]. Using this identity with ap-

propriate choice of ZP in Eq. (12) yields

c uJ= — Tr[(xG+ —G+x)(xG —G x)j
AA
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FIG. 2. Comparison of the predicted 6eld dependence of the
correlation field, 8,(8) (normalized to its low-field value), to
data of Ref. [2] using parameters cited therein (no free parame-
ters). The range of tp Tp shown corresponds to the interval
0-12 T (sample is low mobility and not in the quantum Hall re-

gime).

when applied to a two-dimensional electron gas in high

magnetic field, since the theory neglects localization
effects completely. These effects are suppressed by the 8
field when l((r, and often can be negligible; whereas in

high field the relevant perturbative parameter is N
—htu, /sf, which is an increasing function of 8 for fixed

density. Hence the range of system size for which the ex-
pression is approximately valid gets smaller with increas-

ing 8 and the localization effects lead to the suppression
of fluctuations in the Hall plateaus. This implies that the
ergodic hypothesis [3] fails badly and varying 8 is not
equivalent to changing the impurity configuration at fixed
8 In the .infinite system at T 0 the width in 8 of the
extended states would go to zero and so would the width

of the resistance steps; however, in mesoscopic systems at
nonzero T these widths remain substantial (=0.5 T in

Ref. [1])and our theory is relevant. Reference [1] finds

8, =0.04 T, so 8, is roughly 8% of the step width mak-

ing it difficult to obtain a statistically meaningful mea-
sure of Var(g) by varying B. Tests of the theory in the
quantum Hall regime should ideally be made in a small

range of 8 field near the center of the LL, varying some
other parameters to obtain statistically independent con-
ductance measurements. Our prediction is that for sam-

ples with short-ranged disorder the amplitude of the fluc-
tuations will be independent of the LL index (the behav-
ior for smooth disorder is not yet known).

The theory presented here highlights further the
universality of mesoscopic fluctuation phenomena. The
details of the bare quantum states are unimportant as
long as they are extended since at large distances the only
coherent scattering (represented by the diffuson) will be
described by a diffusion equation with only the diffusion
constant reflecting the nature of the underlying states.
Since the diffusion constant cancels in the variance of the
conductance (and in other physical properties), one finds

remarkably general behavior.
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