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We show theoretically and experimentally that an infinitesimal imperfection in the symmetry of a sys-
tem has a macroscopic influence on the stability of spatiotemporal patterns originated in a symmetry
breaking process. This result makes it possible to discuss differences between experiments and models in
which such corrections have not been taken into account. We show that the stability of the solutions
arising from the first symmetry breaking transition in the Maxwell-Bloch equations is valid for every

laser with radial symmetry.
PACS numbers: 42.50.Lc, 02.20.+b, 05.45.+b

In this paper we analyze the symmetry breaking pro-
cess that leads to the formation of spatiotemporal pat-
terns in optical systems. While this subject received some
attention during the 1960s [1], it has recently been possi-
ble to return to the problem with mathematical tools that
were not available at that time [2,3]. Nonlinear dynami-
cal theory and bifurcation theory applied to symmetry
groups may be used to explain the transition from simple
to complex patterns. This approach is valid for any
dynamical system possessing the same symmetry.

The formation of patterns and their dynamical evolu-
tion in nonlinear optics has been the subject of several pa-
pers during the last years [4-9). It has been shown ex-
perimentally that a spontaneous symmetry breaking pro-
cess takes place in lasers as the Fresnel number is in-
creased adiabatically [5). Similar experimental results
have been obtained in He-Ne lasers [6], and in pho-
torefractive oscillators [7]. Most of these papers do not
address the question of the transition from simple to com-
plicated patterns but just the facts that optical systems
display complex structures, and/or that it is possible to
characterize them in terms of statistical functions [7], the
presence of defects [8,9], or a modal decomposition of the
electromagnetic field [4,6,9,10]. A different strategy was
taken in Ref. [5] using a group theoretical approach
where we provided an interpretation of the transition
from a completely symmetric state to one in which all
symmetries of the original O(2) group are broken. Al-
though symmetry considerations are independent of par-
ticular models, the question arises of how perfect the
symmetry of the system has to be to justify an application
of such methods to the interpretation of experimental re-
sults.

Here we study the transition to spatiotemporal com-
plexity in lasers with “imperfect symmetry,” comparing
experimental with theoretical results. We show that
slight imperfections will not affect the general spatial
configuration of the possible solutions, but that they can
strongly affect their stability, limiting the validity of nu-
merical results obtained from symmetric models. We
also prove that for laser models the stability of the pat-
terns that break the cylindrical symmetry is independent
of the parameters and therefore valid for any kind of
laser system. By considering imperfect symmetry we are
able to predict the bifurcation sequence as it is observed

experimentally. To our knowledge a dynamical study of
the type presented here does not exist for any experimen-
tal physical system.

In our experiment we have used two different CO,
lasers, one with a cylindrical tube and one with a so-
called annulus configuration. In the latter case we allow
the interaction between the electromagnetic field and the
atoms of the active medium to take place only in a nar-
row range of values of the radial coordinate. In this way
the angular coordinate 0 is the only spatial variable of the
system and the boundary conditions are periodic. This
configuration simplifies the comparison with theoretical
results because the symmetry breaking process departs
from an initially vanishing electric field.

Both experimental setups are in principle equivariant
to rotations around the optical axis [actually O(2) sym-
metry groupl. The first symmetry breaking bifurcation of
this group yields two possible solutions: traveling waves
(TW) or standing waves (SW) in the azimuthal direc-
tion. Then, the field E is described by

E=(Z|€ilo+22(’ —iIB)eia)l’ (l)
where / is the wave number, and the complex functions z,
and z, may depend upon the radial coordinate, and must
satisfy the condition

dzi/dt =\ +iw)z; +ZMUzk|z>,-|2, 2)
i

where A+iw, the eigenvalues, and M;;, the coupling
coefficients, depend in principle on the parameters of the
laser.

Taking **all possible versions” of the well-known Max-
well-Bloch equations [11] we compute the coefficients
M, and the result takes the general form

M||=M33=—A, M|z=M21=_2A. (3)
where A is a positive quantity that depends on the relaxa-
tion rates, the detuning, and the gain of the laser. After
substituting (3) into (2) we get

dz\/di=O+iw)z,— Az +2]|z2] D)z,

dzoldt = +iw)z:— A(|z2]2+2]z,])z>.

If we write zx =pge'®, the equations for the amplitudes
pr decouple from the equations for the phases ¢x. The
dynamics of the phases is trivial, and the dynamics of the
amplitudes is summarized in Fig. 1. For A <O there is
only one fixed stable point, the trivial solution. For A >0
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FIG. 1. Phase portrait showing the stable and unstable fixed
points as a function of the control parameter A.

the trivial solution becomes unstable, and three fixed
points appear: a saddle {p;,p)} ={A/341'2,A/341"3,
corresponding to a standing wave, and a pair of attrac-
tors:  {pr.pd ={A/A1'2,0} and (py,p2) =1{0,0/41'3.
The two attractors correspond to traveling waves. There-
fore the process of symmetry breaking in every homo-
geneously broadened laser with cylindrical symmetry
must begin with the appearance of a TW. It is
worthwhile to note that the inclusion of higher-order
terms in the normal form reduction does not stabilize the
standing waves. Nevertheless, experimental evidence in
Ref. [5] and in this paper shows preference for SW solu-
tions.

These discrepancies lead us to study a Z, equivariant
system (symmetric under reflection), highly degenerate
towards an O(2) symmetry. This would be appropriate if
a slight asymmetry is considered in any of the laser pa-
rameters (e.g., cavity losses or excitation current). In
this case Egs. (4) become [12]

dz\Jdt =O+iw)z,— A(z|2+2|22|?)z  + ez,
dZ?_/dl =()\+iw)21_A(|22|2+2|2|'2)23+82| ,

where £=p.e’® is the symmetry breaking parameter
which is assumed to be much smaller than 4 in modulus.
In Egs. (5) it is no longer possible to decouple amplitudes
and phases; yet, the effective dimension of the system is
three and not four, as the equation for ¢;+ ¢, decouples
from the equation for py, p2, and 0 =¢, — ¢».

For a =0 and &=0 the TW solutions no longer exist,
and for values of the control parameter A in the range
—p: <A <2p. the SW is the stable solution. When A
grows greater than 2p. a pitchfork bifurcation takes
place, the SW solution becomes unstable, and a new pair
of attractors appear. They are a superposition of a SW
and a TW, both with the same optical frequency w.
These results are summarized in Fig. 2.

In the general case of a0, the stability of the SW
solution is easily obtained from a linear stability analysis.
If a=n/4, the SW solution is destabilized by a secondary
Hopf bifurcation. This new solution with two frequencies
is called a modulated wave (MW) [12].

Experimentally we study the influence of slight asym-
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FIG. 2. (a) As Fig. | with &0 and A > 2¢. (b) Region in
parameter space where the SW and SW+TW are stable.

metries with an annulus laser. We begin our studies with
the annulus laser since it has the advantage of quenching
cylindrically symmetric distributions of the laser intensity
I; then the symmetry breaking bifurcation has to occur
from the trivial solution (/ =0) and the temporal dynam-
ics of the intensity becomes very simple. The spatial dis-
tribution of the average intensity is observed with in-
frared image plates while the temporal behavior is
recorded with two HgCdTe detectors. One of the detec-
tors is mounted on a rotating table to allow the measure-
ment of the relative phase of the intensity oscillations at
different places in the pattern. The degree of imperfec-
tion in the O(2) symmetry is controlled by laterally
displacing an intracavity iris. When this diaphragm is
centered we have the maximum possible symmetry in our
system.

The bifurcation parameter used in this experiment is
the gain of the CO, medium which increases as the exci-
tation current increases. For currents of the order of 5
mA the laser is below threshold and the output intensity
is zero. As the current increases above S mA, the laser
intensity increases and its spatial distribution consists of
several maxima in the azimuthal direction at a given ra-
dial position [Fig. 3(a)]. The detectors show no evidence
of intensity oscillations, and the intensity vanishes be-
tween consecutive peaks. This configuration corresponds
obviously to a standing wave of the electromagnetic field
in the azimuthal direction oscillating at a single optical
frequency and with wave number /=7. It can be associ-
ated with the SW solution of the theoretical results in the
region in which A <2p,. Changing adiabatically the con-
trol parameter leads to a secondary bifurcation. The spa-
tial intensity distribution [Fig. 3(b)] shows a continuous
ring superimposed on the previous peaks. The intensity is
still time independent but it does not vanish between the
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FIG. 3. Spatial intensity distribution of the laser: (a) At low
excitation current 14 maxima with the same radial coordinate
and equally spaced in the azimuthal direction are observed. (b)
At high excitation current a ring appears superimposed to the
SW. The intensity is time independent evidencing that the SW
and TW superimposed have the same frequency.

peaks. This pattern can only be interpreted as the super-
position of a standing wave and a traveling wave both os-
cillating at the same optical frequency. This observation
is evidence that the imperfections are playing a funda-
mental role on the pattern formation because this solution
does not exist in the case of a perfect O(2) symmetry
where a superposition of a SW+TW is always followed
by a secondary Hopf bifurcation that gives rise to oscilla-
tions in the intensity. A further increase in the excitation
current generates a more homogeneous pattern in the
spatial distribution of the intensity which is still time in-
dependent. This corresponds to a predominance of the
TW over the SW solution. However, the presence of both
is determined by the difference in intensity as a function
of the angular coordinate.

If this pattern is perturbed, long transients (of the or-
der of seconds) appear. During these periods of time in-

tensity oscillations are present, and two particular points
are distinctively observed in the spatial distribution of the
time averaged intensity [Fig. 4(a)]. The time behavior is
periodic, and the amplitude of the oscillations vanishes at
those particular points in space characterized by a
minimum of the intensity [Fig. 4(b)]. As the position of
one of the detectors is rotated along the ring, a gradual
change of the phase of the oscillations is observed. These
measurements indicate the presence of two waves travel-
ing in opposite directions departing from a single point
and ending at another point on the opposite side of the
pattern. This may be explained by the formation of a
transient source and sink of waves [13]. However, after
the transient the order is reestablished and just one of the
two traveling waves survives as the asymptotic solution
superimposed to a standing wave.

By carefully centering the iris we decrease the amount
of imperfection to the O(2) symmetry. The qualitative
behavior of the system is very similar with the decreasing
region of the stability of the SW solution. For high
current values (14 mA) we observe stable periodic oscil-
lations in the output intensity. This solution can be asso-
ciated with the MW described above.

Since the theoretical results do not make use of the
particuiar annular cross section of our laser, they are val-
id for any configuration with cylindrical symmetry, in
particular for a laser in which the central region remains
active. Because of this we tested the scenario with such a
laser and we obtained results qualitatively identical to
those of the annulus. Differences arise due to the pres-
ence of radially symmetric solutions from which the SW
and SW+TW bifurcate. This difference causes oscilla-
tions in the intensity due to beating between the patterns,
and the average intensity does not provide by itself an
unambiguous method for the identification of the pat-
terns. However, the presence of radially symmetric solu-
tions is an indication of the high degeneracy the system
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FIG. 4. (a) Intensity distribution during transients. (b) From top to bottom: Transient oscillations of the intensity. The high am-
plitude signal was taken in point 3 of (a). The low amplitude signal corresponds to points | (source of waves), 2, and 4 of (a), respec-

tively.
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FIG. 5. Intensity across different patterns in a laser with the central region active. (a) Standing wave solution. (b),(c) Cylindri-
cally symmetric+(SW+TW) solution. (d) Cross section of a MW solution. Two frequencies are observed in the power spectrum.

has towards an O(2) symmetry. The appearance of SW,
SW+TW, and MW is documented in Fig. 5.

In conclusion, we demonstrate that experimental im-
perfections to the general symmetry of the system play a
determinant role in the stability of spatiotemporal pat-
terns in spatially extended systems. Theoretical models
that will not contain this correction may generate not
only quantitative but also qualitative features that are not
experimentally reproducible even if the corrections are
infinitesimal. On the other hand, we also prove that a
simple generalization of the bifurcation theory applied to
the underlying symmetry group is able to predict the
structures of the “‘real” patterns. The results of this gen-
eralization can be applied to any physical system possess-
ing the same symmetry. In the case of laser systems the
qualitative behavior of the transition from symmetric to
asymmetric patterns is parameter independent. Finally
we believe that symmetries are frequent in nature.
Therefore we usually forget how nongeneric they are in
mathematical terms. Small perturbations that break the
symmetry of a system can have a dramatic influence in its
solutions.
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FIG. 3. Spatial intensity distribution of the laser: (a) At low
excitation current 14 maxima with the same radial coordinate
and equally spaced in the azimuthal direction are observed. (b)
At high excitation current a ring appears superimposed to the
SW. The intensity is time independent evidencing that the SW
and TW superimposed have the same frequency.
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FIG. 4. (a) Intensity distribution during transients. (b) From top to bottom: Transient oscillations of the intensity. The high am-

plitude signal was taken in point 3 of (a). The low amplitude signal corresponds to points 1 (source of waves), 2, and 4 of (a), respec-
tively.



