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Spontaneous Emission in Absorbing Dielectric Media
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We have calculated the effect of material absorption on the rate of spontaneous emission by an em-
bedded atom using a macroscopic Green-function approach and a microscopic Hamiltonian method that
includes reservoir damping. When local field effects are neglected, the free-space emission rate is

modified by the rea/ part of the refractive index at the transition frequency of the embedded atom. Lo-
cal field effects are introduced via a local field correction factor. This modification of the spontaneous
emission rate generalizes a well-known result for transparent media and is of crucial importance in as-

sessing the degree of inhibition of spontaneous emission for frequencies close to the resonances of the
dielectric.

PACS numbers: 42.50.-p, 32.70.Fw, 78.90.+t

It has long been recognized that the spontaneous emis-

sion rate of an excited atom is not an immutable proper-

ty, but that it can be modified by the atomic environment

[1]. The presence of suitable boundaries can enhance or
reduce the local vacuum field fluctuations and thereby
alter the spontaneous emission rate [2,3]. The decay rate
of an excited species embedded in a bulk dielectric medi-

um is also modified when compared with the free-space
rate, given by

I e =p to /3ttAeec

for a transition of frequency m, and dipole moment p.
Previous analyses of the spontaneous emission rate in a
bulk dielectric have treated the efl'ect of the medium via a

real permittivity introduced either phenomenologically

[4,5] or derived from a microscopic model [6]. In the ab-

sence of absorption, the coupling between the material

polarization and the radiation field introduces a band gap
[7] which totally suppresses spontaneous emission [8].
However, the Kramers-Kronig relations require the per-

mittivity in a dispersive dielectric to be complex and the

region of sharpest refractive index variation usually has

an associated absorption. This suggests that the absorp-

tion will play a vital role in the rate of spontaneous emis-

sion in the region corresponding to this band gap and that
its effects must be included in any realistic calculation.
The inclusion of dispersion and absorption should also be

of relevance to the calculation of the photonic band gap
which has been demonstrated in periodic dielectric struc-

tures [8,9].
In this Letter, we calculate the spontaneous emission

rate in an absorbing linear dielectric by two different

methods. The first is based on an application of the

fluctuation-dissipation theorem to the dielectric Green

function. The second proceeds from the diagonalization

of a microscopic model including the electromagnetic

field, the polarization of the medium, and the reservoirs

that cause the polarization to decay.
The standard expression for the spontaneous emission

rate for an atom at position r with a transition dipole ma-

trix element p parallel to Cartesian axis j is [10]

%e note that this expression is based on first-order per-

turbation theory (Fermi golden rule) and therefore does

not include the reaction of the polarization of the medium

on the atom. This approximation is equivalent to the

identification of the macroscopic field E (r) and the local

field at the position of the atom. Local field effects will

be introduced at a later stage.
The field matrix element in (3) can also be expressed in

the Heisenberg representation, which enables us to write

the spontaneous emission rate in terms of the power spec-

trum of the fluctuations by

I =(2tt/lt )p &E (r) & (4)

where &E; (r)EJ(r')& is defined as the Fourier transform

of the field correlation function [11]. It is readily ob-

tained by means of the fluctuation-dissipation theorem

where E (r) is the transverse electric field in the

Schrodinger representation and the electric field matrix

element describes the accompanying excitation of the

electromagnetic field from its vacuum state to a final

state with a single photon of frequency to. As this matrix

element is nonzero only for single-photon states, the sum

can be formally extended to all possible final states and

use of the completeness of the photon states leads to

(3)
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and Kubo's formula [11]in the form
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(E; (r)EJ (r')) = —n ' Im[G J (r,r';co)], (s)

where G;~(r, r';tv) is the Fourier transform of the retarded Green function of the transverse electric field. In a homo-
geneous dielectric, it depends only on the difference r —r' and is most easily calculated in reciprocal space [11,12]:

e;(q, 1)ej(q, 1)+e;(q,2)ej(q, 2)
GQ f t J t l t J

ep (qc/tv) ' —e(to)

H«e, the e(q, &) with A, =1,2 are unit independent transverse polarization vectors and e(cp) is the cotnplex dielectric
function. Substitution of the spatial Fourier transform of (6) and of (5) into (4) provides an expression for the spon-
taneous emission rate in which the evaluation of the angular integral gives

2 rpc' e" (cp, ) I'" q'dqr, -rp
naacp[2e(tp)q2c2]2+[tv 2e()]2 (7)

where e' and e" are the real and imaginary parts of the
dielectric function e(tp). Note that the decay rate is in-
dependent of dipole orientation j, as expected in an iso-
tropic medium. The remaining integral can be evaluated
by contour integration. It is convenient to define the real
material refractive index rt(co) and extinction coefficient
x(to) in the usual way by

[rt(to)+lK'(rp)] =e (tp)+le (N), (s)

and rt(rp) ~ 0. The result then takes the simple form

r, =rt(to, )I p. (9)

From the above derivation, we see that the dielectric
affects the spontaneous emission rate via a modification
of the power spectrum of the macroscopic transverse elec-
tric field in the vacuum. This power spectrum may be
calculated via the Auctuation-dissipation theorem as
above or by an ab initio derivation from a microscopic

Hamiltonian including the medium polarization and the
electromagnetic field [13]. This second method relies on
the explicit diagonalization of the Hamiltonian and is
therefore restricted to a simple model of the dielectric.
However, it can be easily extended to treat various in-

teractions between embedded atoms or molecules.
Our starting point is the Hamiltonian density for a

damped harmonic polarization coupled to the free elec-
tromagnetic field. It can be decomposed into a longitudi-
nal part, including the longitudinal part of the elec-
tromagnetic field coupled to the longitudinal part of the
polarization field, and a transverse part, including the
transverse parts of both fields. As we are interested in
the transverse electromagnetic field, which is not coupled
to the longitudinal part, we consider only the transverse
part of the Hamiltonian [for notational simplicity, we do
not write the (r, t) dependence of all the operators explic-
itly]:

2.
/f= —ep(E ) + (VxA) + A +g dtpha)B(~(to)B;(tv)

2 pp p; 4

&/2

ha
2p

gA; „da)t(*(to)B;(to)+((to)B;t(a))], (10)

where a is the charge density, p is the effective mass den-
sity associated with the harmonic polarization, and A is
the vector potential. The B;(tp) are annihilation opera-
tors for the i component of the transverse polarization
field, dressed by its interaction with the reservoirs respon-
sible for the damping of the polarization, and g(to) is the
coupling between the field and the dressed polarization.
These operators satisfy the usual equal-time commutation
relations for transverse fields (we now write the space-
time dependence explicitly):

[B;(r,t, to), BJ (r', t, to')] =b J(r r')b(to co') . ——

The fields in the Hamiltonian density can be expressed as
Fourier expansions in single-mode creation and annihila-
tion operators in the normal way. The Hamiltonian is

then determined by integrating the density over all space.
It can be diagonalized exactly by application of a tech-
nique developed by Fano [14]. This procedure involves
seeking annihilation operators of the form Cq(q, cp) ex-
pressed as linear combinations of the field and matter
creation and annihilation operators and obeying the com-
mutation relations

0= d q dhpg ht0C~ (q, )Cto~(q, ) t.v (13)

These annihilation and creation operators have simple

[C&(q,cp), C& (q', to') ] =b&& b(q q')b(to —to'), —(12)

such that the Hamiltonian has the form
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(i4)

where the complex dielectric constant e(to) is related to the microscopic properties of the model by the relation

harmonic dependence and they act to annihilate or create dressed excitations of the interacting medium and the elec-
tromagnetic field. The physical properties of the medium and the electromagnetic field can be expressed in terms of the
dressed operators; in particular, we find that the transverse electric field has the form

i/2

E (r, t) = I d qge(q, A, ) J dho — Ci(q, to)e ' ' '+H. c.
(2tr) 't' "

~.
'

2peo2 to'e(ni) —q'c'

r, =q(~.) I[~(~.)+2]/3I I o. (i6)

In the lossless case (solid curve in the figure), the dielec-
tric has a forbidden gap between the resonance frequency
coo and the longitudinal frequency coL defined by mL

=coo+Np cop being the plasma frequency of the dielec-
tric. We note that there is a sharp rise in the decay rate
for an atomic transition frequency below the dielectric
resonance frequency followed by a dip above it, covering
the frequency range from just above coo to just above coL, .
The nonzero decay rate in the region of the band gap is

only possible because of the dispersive refractive index as-

2 goo ( ) 2

e(co) =1+ 8, , den'+ttri((co)i
2peo~' ~ -- m'(to' m—)

and it can be easily shown that e(to) satisfies the
Kramers-Kronig relations [13].

Using the expression for the transverse electric field in

(14), we substitute in (3) to calculate the fluctuations in

the ground state of the coupled matter-field system (the
dielectric vacuum) and regain the result that the spon-
taneous emission rate in the dielectric differs from the
free-space rate by a factor equal to the real part of the re-
fractive index.

As mentioned earlier, the above calculations are incom-

plete since they determine the spontaneous emission rate
from the power spectrum of the fluctuations in the mac-
roscopic field E (r) rather than the local field at the po-
sition of the atom. The relation between the local and
macroscopic fields depends upon the precise nature of the
environment of the radiating atom, and several cases have

been treated for lossless dielectrics [3,5,6]. For the sim-

ple example of a virtual cavity of dimensions small com-

pared to the length scale of the field fluctuations in a
lossy dielectric, the appropriate squared local field is ob-

tained [15] from the squared macroscopic field upon mul-

tiplication by the local field correction factor: ~[e(to)
+2]/3

~
. A more detailed analysis of these effects re-

quires taking into consideration the reaction of the polar-
ization of the medium on the emitting atom and this will

be addressed in a later publication.
In Fig. 1 we plot the spontaneous emission rate of an

atom embedded in a dielectric with a single resonance at
too and a Lorentzian line shape as a function of the tran-

sition frequency of the atom co, for three different values

of the loss in the dielectric. With the above local field

correction factor included, the modified spontaneous

emission rate is given by

(is)

sociated with the absorption, and the inhibition of the
spontaneous emission is more pronounced for the smaller
absorption. As the inset of the figure shows, the regions
of strong inhibition and high absorption tend to coincide,
thus impeding observation of the effect. However, partic-
ularly for lower values of the loss, there is a significant
range of frequencies close to mL for which strong inhibi-
tion is accompanied by small absorption. Another in-

teresting possibility would be to use the enhancement of
the index of refraction via quantum coherence recently
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FIG. 1. Spontaneous emission rate of an embedded atom as

a function of the atomic transition frequency (re, ) for a dielec-

tric with one resonance. I 0 is the free-space spontaneous emis-

sion rate and all the frequencies are in units of the resonance

frequency of the dielectric (mp=1). The dielectric constant is

e(m) 1 +to&/(toll —t0 —i yea), where roz is the plasma frequen-

cy chosen to give a longitudinal frequency coL, =1.1 (co~ =0.46)
and y is the loss coefficient. The three curves correspond to
three values of y: solid curve, y=0 (no losses); dotted curve

y 0.01 (low losses); dashed curve, y=0. 1 (high losses). For

frequencies below resonance, the solid curve is superimposed on

the dotted one. Inset: The corresponding extinction coefficient

in the dielectric.
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suggested by Scully [16] to obtain a refractive index with

a small real and imaginary part.
The frequency-dependent enhancement or suppression

of the spontaneous emission rate can be understood as an
interference between decay directly into the electromag-
netic field and decay via the medium polarization.
Indeed the phenomenon is reminiscent of the photoioniza-
tion of an atom in which an unoccupied high-lying state is
coupled to the free-electron continuum by a laser. The
embedding of this bound state into the continuum causes
frequency-dependent enhancement or inhibition of the
ionization rate due to interference between direct ioniza-
tion and ionization via the coupled bound state [17].

In conclusion, we have shown how the spontaneous
emission rate of an embedded atom is modified by the
dielectric. By allowing for both dispersion and absorption
by the medium for the first time, our analysis enables us
to cover the full frequency spectrum, including regions
close to the resonances of the medium. The two methods
presented here to calculate the spontaneous emission rate
are in some sense complementary. The first one, based on
the macroscopic Green function, does not rely on a par-
ticular model for the dielectric and can therefore be ap-
plied to any homogeneous dielectric. Its limitation is that
it can only be used to calculate field expectation values
which are related to the dielectric Green function. By
contrast, the second method relies on the explicit intro-
duction of a harmonic field to model the dielectric struc-
ture. However, as the expression for the electric field in
the dielectric is derived, this method could be used to
treat a wider range of phenomena for embedded atoms or
molecules.
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