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An array of capacitive probes is used to measure the spatially dependent electric field associated with

a driven chaotic instability in p-type ultrapure Ge. As the drive amplitude is increased, we observe first
the onset of temporal chaos and later a transition to a higher-dimensional attractor with a loss of spatial
coherence due to the nucleation and destruction of high-field domains in the bulk of the sample.

PACS numbers: 72.20.Ht, 47.20.Tg, 85.30.Fg

The role of spatial degrees of freedom in temporally
chaotic systems is currently of great interest and has been

experimentally explored in one-dimensional fluid [1-3]
and chemical [4] systems. Recently, Mosekilde et al. re-

ported spatiotemporal chaos in numerical simulations of a
semiconductor system, driven Gunn diodes [5]. Held and
Jeffries investigated the spatial structure of a helical in-

stability [6,7] in an electron-hole plasma in n-type Ge at
77 K. Spontaneous current instabilities due to impurity
impact ionizati. on have been observed at low temperatures
(T ( 30 K) in Ge [8-11],GaAs [12], InSb [13], and Si
[14]. Semiconductor instabilities are of interest because
the dynamics of space charge in semiconductors can play
an important role in photoconductors and high speed de-
vices. These instabilities are well suited for experimental
studies of nonlinear dynamics due to their accessible time
scales and excellent dynamic range.

A spontaneous periodic current oscillation is observed
in voltage-bia. ed p-type ultrapure Ge at liquid-helium
temperatures [9]. Using a movable capacitive probe,
Kahn, Mar, and Westervelt [15] found that each period
of the oscillation is associated with the nucleation and
motion of a single high-field domain along the conduction
direction. Gwinn and Westervelt [11,16] used this system
to verify to high precision the universality of temporal be-
havior at the quasiperiodic transition to chaos. They
showed that the dynamics are well described by a low-

dimensional circle map model at the critical line, even

though this is a spatially extended system. In this Letter
we use an array of capacitive probes to investigate the
spatially dependent electric field associated with driven
chaotic oscillations. For drive amplitudes just above the
critical line, the chaotic oscillation is low dimensional, in

agreement with the results of Gwinn and Westervelt
[11,16], and a single domain is observed traversing the
sample. When the oscillation is driven chaotic well above
the critical line, we observe a transition to a higher-
dimensional attractor and a gradual loss of spatial coher-
ence due to the nucleation and destruction of domains in

the bulk of the sample. A similar loss of spatial coher-
ence was observed for a helical instability in Ge [6]. In
our experiment the voltage bias provides a feedback
mechanism by which the different parts of the sample in-
teract, since at all times the integrated electric field is

fixed by the overall bias.
The samples were grown at Lawrence Berkeley Labo-

ratory and were cut from the same crystal as those used

previously by Gwinn and Westervelt [11,16] and by
Kahn, Mar, and Westervelt [15]. The crystal is p-type
ultrapure Ge with a shallow acceptor concentration —1

X IO" cm, with characteristics described in Ref. [15].
Ohmic p contacts are fabricated using B-ion implanta-
tion to degenerately dope a thin layer of germanium. The
samples are rectangular with dimensions 14.5x4.0x4.0
mm and contacts across both 4 x 4 mm faces. We chose
this geometry so that electric-field lines lie along the
length of the samples and variations in the electric field
occur primarily along the conduction direction. We have
experimentally verified the absence of current filaments in

similar samples prepared with the same method [17].
The behavior of this system under dc voltage bias has

been explored previously [15]. At a well-defined thresh-
old in the applied electric field [voltage/(sample length))
Ea, =3.2 V/cm, the sample current increases by several
orders of magnitude due to impact ionization of shallow
acceptors. When Ea, is increased .to E, =6.30 V/cm the
onset of periodic current oscillations is observed. Each
oscillation period is due to a single high-field domain
composed of trapped charge which periodically traverses
the sample [15]. For all results reported here the dc part
of the applied electric field is fixed at Ea„=7.45 V/cm,
which is above the threshold field E,. for spontaneous
periodic current oscillations. The fundamental frequency
fo of the spontaneous oscillation for this dc bias is 1.20
kHz. Several theoretical models [18-20] predict a region
of N-shaped negative differential resistivity (NDR) in the
plot of local current density versus local electric field in
the postbreakdown regime. I t is well known that
voltage-biased samples with such an N-shaped charac-
teristic may be unstable to the formation of moving
high-electric-field domains, resulting in current oscilla-
tions [21].

In order to measure the spatially dependent electric
field associated with nonperiodic current oscillations, an
array of sixteen capacitive probes is fabricated on a sap-
phire substrate using photolithography. The probes are
arranged in eight equal pairs as illustrated in Fig. l. The
sample is laid on top of the array with the probes oriented
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FIG. 1. Top view of the experimental geometry, showing ar-

ray of paired capacitive probes. Each probe is 300 pm wide.
%'ithin each pair the center-to-center distance between probes
is 400 pm.

FIG. 2. Arnold-tongue diagram showing low-order lockings
as a function ot' fo/f~ and drive amplitude A. The shading is

drawn to indicate the location of the critical line.

perpendicular to the conduction direction. Each probe is

300 pm wide, extends across the sample, and couples to it
with a capacitance =0.2 pF. The current induced in

each probe by the local time-dependent sample voltage is

integrated and amplified using a charge-coupled amplifier
[15]. There is negligible cross talk between probes be-
cause each probe is at virtual ground. The amplifier out-
puts are simultaneously digitized using a sixteen-channel
transient recorder operated at 50 kHz, and the recorded
voltages are normalized with respect to variations in ca-
pacitance between the probes. The local electric field

E(x, t) is determined at eight positions along the sample

by taking the difference between sample voltages within

each pair. The spatial resolution for measuring E(x, t) is

approximately 400 pm, the center-to-center distance be-
tween probes. The sample temperature is maintained at
4.2 K by immersion in liquid helium maintained at 1 atm.
A sinusoidal ac drive voltage is superimposed upon the dc
bias voltage, so that the total applied electric field is given

by E««1(t) =Ed, +Asin(2nfdt), where Ed„isthe dc part.

of the applied field, A is the drive amplitude, and fd is the
drive frequency. The sample current is measured by am-

plifying the voltage across a small (10 0) series resistor.
The frequency-locking behavior of the driven oscilla-

tion is described by the set of Arnold tongues shown in

Fig. 2, with the drive amplitude A along the vertical axis
and the frequency ratio fo/fd along the horizontal axis.
Application of the drive may shift the fundamental fre-
quency from fn to f„and the oscillation may lock onto
the drive over a range of frequencies. The locking ratio

f, /fd is indicated .above each tongue. Experimentally,
each tongue is mapped by varying the frequency and am-

plitude of the applied drive and determining when the os-
cillation becomes unlocked using a spectrum analyzer. In

Fig. 2 the tongues extend for increasing drive amplitude
until hysteresis is first observed in the boundary of the
tongue. It has been shown [11,16] that this system is well

described at the quasiperiodic transition to chaos by the
circle map. In this model, hysteresis occUrs only above
the critical line where the map becomes noninvertible.
The tops of the Arnold tongues in Fig. 2 approximate the

(a) (b)

FIG. 3. Poincare map of the sample current for (a) drive

amplitude A =G.85 V/cm and fo/fI=G. 62; (b) A =1.91 V/cm

and fn/f, f =0.18.

critical line, which need not be smooth; above the critical
line it is possible to drive the oscillation chaotic.

Figure 3 shows Poincare maps of the sample current
driven in the chaotic regime for two different sets of drive

parameters. These plots are constructed by sampling the
current l„(p)at a fixed drive phase p and plotting the
first return map I„+[vs I„.The drive amplitude used for
Fig. 3(a) is A =O.S5 V/cm, above the critical line in Fig.
2, and the drive frequency is at fo/f&=0. 62, approxi-
mately equal to the golden mean og=(J5 —

I )/2. The
folds in the Poincare map at the bottom and along the
right in Fig. 3(a) are characteristic of the wrinkled torus
for the quasiperiodic transition to low-dimensional chaos.
Figure 3(b) shows the Poincare map resulting from a

drive with larger amplitude and higher frequency, with

A =1.91 V/cm and fn/fr=0. IS. The sample current is

again chaotic but in this case the Poincare map has a

much fuzzier appearance, indicative of a higher-dimen-
sional at tractor.

Figure 4(a) shows the measured spatial structure asso-

ciated with the driven chaotic oscillation over a number

of oscillation periods, using the same drive parameters as
for Fig. 3(a). The local time-dependent electric field is

shown at eight equally spaced positions along the sample;
the trace taken closest to the injecting contact is at the
bottom of Fig. 4(a). The figure clearly shows that the
time dependence of the oscillation is due to a single
domain traversing the sample. Thus, even though the
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FIG. 4. Local sample electric field vs time at successive posi-
tions along the sample for (a) drive amplitude A =0.85 V/cm
and fo/fd =0.62, as used for Fig. 3(a); (b) A =1.9I V/cm and
fo/fd=0. I8, as used for Fig. 3(b). The bottom trace is taken
closest to the injecting contact in both figures.

current is temporally chaotic, the electric-field variations
are spatially coherent. High-field domains are nucleated
only near the injecting contact. Each domain moves

smoothly through the sample and always reaches the re-
ceiving contact. A new domain is nucleated only as the
previous domain leaves through the receiving contact.
The nonperiodic nature of the oscillation is manifested as
a variation in the amplitude of the domains when they
first enter the sample and as a variation in the intervals
between domains.

Figure 4(b) shows electric-field traces E(x,t) associat-
ed with the driven chaotic oscillation using the same pa-
rameters as for the Poincare map in Fig. 3(b). The spa-
tial structure shown in Fig. 4(b) is much more complicat-
ed than that in Fig. 4(a). In particular, Fig. 4(b) shows
individual domains being nucleated and destroyed in the
bulk of the sample, and at times there are multiple
domains in the sample. The bottom two traces in Fig.
4(b) show fluctuations in E(x,t) at the drive frequency.
The next several traces show the growth and decay of
larger structures. Very few of the domains in Fig. 4(b)
succeed in reaching the last pair of capacitive probes,
which is 1.6 mm from the receiving contact. The com-
plex spatial structure shown in Fig. 4(b) shows that for
this set of drive parameters many degrees of freedom are
important, as suggested by the Poincare map in Fig. 3(b).

We have measured the effect of the ac drive on spatial
coherence over a range of drive parameters. As a mea-
sure of the spatial coherence, we use the linear correlation
coeScient r ( &rx) defined as [22]

gd E(d, t)E(d —x, t+ r )
r& x, r I

lZ& E(d, t)' X&E(d x, t+. )-'I '" '—

FIG. 5. Density plot of the maximum value of the linear
correlation coeScient r(x =1.6 mm, r), as a function of fo/fd
and drive amplitude A. The black dot (A =0.85 V/cm,
fo/fd=0. 62) indicates the parameters used for Figs. 3(a) and
4(a) and the white dot (A =1.9l V/cm, fo/fr =0.IS) indicates
the parameters used for Figs. 3(b) and 4(b).

where x and d are discrete distances along the conduction
direction and r is a time interval measured from an ini-
tial time t. This function is sensitive only to changes in

the shape of the electric-field profile because the normali-
zation in the denominator removes the effects of differ-
ences in the overall amplitudes of the signals. For each
set of drive parameters we record E(x,t) for 40 ms, and
then calculate r&(x, r) using 1000 difl'erent values of t,
separated by 40 ps. We then average over t to determine
r(x, r) =(r, (x, r)), .

The shape of r(x, r) vs r is peaked at the time for a
domain to move a distance x. For the example of the
spatially coherent oscillation shown in Fig. 4(a) (A =0.85
V/cm and fo/fd=0. 62), the peak value and width are
r „.„=0.7 and hr-0. 2 ms; for the spatially incoherent
oscillation in Fig. 4(b) (A = 1.91 V/cm and fo/fa =0.18),
rm„,„=0.4 and h, r-0.2 ms. Figure 5 plots rm„.„versus
drive amplitude A and fo/fd for the spacing x =1.6 mm
between pairs of capacitive probes; note that the vertical
axis extends further above the critical line than for Fig. 2.
Figure 5 is constructed using twenty equally spaced drive
amplitudes and sixteen drive frequencies equally spaced
in fa/fd. The lighter regions in Fig. 5 correspond to drive
parameters for which the domain motion is spatially
coherent and the darker regions correspond to less corre-
lated behavior. As shown the loss of spatial coherence
occurs gradually; we do not find evidence of a sharp tran-
sition. The drive parameters used for Figs. 3 and 4 are
indicated by dots in Fig. 5. As expected, the drive pa-
rameters used for Figs. 3(b) and 4(b) lie in a much dark-
er (less correlated) region of Fig. 5 than do the parame-
ters for Figs. 3(a) and 4(a).

The least correlated region at the upper left of Fig. 5
corresponds to drive parameters A = 2 V/cm and fo/fd
=0.3. This region of minimum correlation occurs when
the drive period is comparable to a characteristic time
h, t =0.3 ms which is given by the domain velocity divided
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by the domain width. When A is sufficiently large (2
& I. I5 V/cm), domains are created and destroyed in the

bulk of the sample, as shown in Fig. 4(b). The formation
of a domain inside the sample depends on the local
profiles of electric field and trapped charge density.
Different parts of the sample are coupled by the require-
ment that the spatial integral of the electric field equal
the applied voltage. Approximating the local field by its

average across the sample, formation and destruction of
domains are expected to occur when the applied electric
field is comparable to the instability threshold E, . We
observe that for very large drive amplitudes, domains are
destroyed before they reach the receiving contact, and the

peak value of the correlation coeScient increases.
The range of drive parameters shown in Fig. 5 includes

regions in which the oscillation is frequency locked to the
drive as well as regions of chaotic oscillations. The spa-
tial coherence of the electric field for the driven oscilla-
tion is not strongly dependent on whether the oscillation
is locked. The question of whether the oscillation is

locked or chaotic can only be answered by examining a
time series over a number of domain transit times. In

contrast, the spatial coherence is determined by the be-
havior on a time scale which is a fraction of a transit
time.
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