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Euclidean Proton Response in Light Nuclei
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Green's-function Monte Carlo methods are used to determine the Euclidean proton response of light

nuclei from a realistic Hamiltonian containing two- and three-nucleon potential models. Final-state in-

teractions are exactly included in this approach. The calculated Euclidean proton response functions for
the He nucleus are found to be in excellent agreement with those obtained from an analysis of the lon-

gitudinal response functions measured in (e,e') experiments at the Bates and Saclay laboratories.

PACS numbers: 25.30.Fj, 24. 10.Cn, 25.10.+s, 27.10.+h

Inclusive and exclusive electron scattering experiments
performed on H, He, and He [1-5] in the last decade
have unequivocally demonstrated that the plane-wave im-

pulse approximation (PWIA) is too naive a framework
for describing the nucleon knockout process in the quasi-
elastic regime at intermediate energies. Indeed, PWIA
calculations of the longitudinal and transverse response
functions predict far more strength than is experimentally
observed in the quasielastic peak region, particularly at
low momentum transfer [6].

Progress beyond the PWIA has been made in the
theoretical description of the three- and four-body nuclei

electromagnetic response by a number of different ap-

proaches, such as continuum Faddeev (A =3) [7], real-
time path integral Monte Carlo (PIMC) (A =4) [8], or

orthogonal correlated states (OCS) (A =3 and 4) [9,10]
methods. However, it should be emphasized that all of
these techniques involve approximations, of varying de-

grees of severity. For example, the Faddeev or PIMC
calculations are based upon simple interaction models,

such as the central Malfliet-Tjon potential [11],while in

the OCS method the final-state interactions (FSI)
affecting the knocked-out nucleon are accounted for phe-

nomenologically through an optical potential.
The present work is an exact Green's-function Monte

Carlo (GFMC) simulation of the Euclidean (or imagi-
nary-time) proton response function of the He nucleus,

based upon the realistic Hamiltonian
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H=g ' + g v~)+ Z Vijk,
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where v;J and V~jk are the Argonne vs two-nucleon [12]
and Urbana model-VIII three-nucleon [13] interaction
models, respectively. The vs model, a simplification of
the Argonne v ~4 potential [14], reproduces deuteron prop-
erties and S- and P-wave phase shifts up to energies of
400 MeV in the laboratory. The above Hamiltonian
overbinds the a particle by about l MeV in exact GFMC
ground-state calculations [15]. The Euclidean proton
response function E~(k, r ) is defined as

r ecI

(o~pt(k)e ' '
p (k)~0&

E~,,i(k, r—),
where ~0& represents the A-nucleon ground state with en-

ergy Ea, and p~(k) is the nuclear charge density operator
in the impulse approximation,

A
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Here P~; is a projection operator requiring that particle i
be a proton, and R, denotes the center-of-mass posi-
tion. The contribution due to the ground state recoiling
with momentum k and elastic energy ru, ~=k /2Am is

given by
'r el

(oip, (k)io&'.

The Euclidean proton response function is essentially
the Laplace transform of the longitudinal response func-
tion RL(k, ro) measured in inclusive electron scattering
experiments,

E (k, r) =— choe ' S (k, r0),P Z""&
where RL(k, ru) = [Gg,~(k, ro)] SI, (k, r0), and GF. z is the

proton electric form factor. We assume that the interac-
tion of a longitudinally polarized virtual photon with a
nucleus is well approximated by the coupling given by
p~(k). In fact, a study of the He(e, e'p) H reaction sug-

gests that two-body components in the nuclear charge
operator, such as those associated with pion production,
only lead to a small quenching [roughly (1-2)%] of the
longitudinal strength in the momentum transfer range of
interest here (k ~ 500 MeV/c) [10].

In order to obtain Ez(k, r ), one must integrate

S~(k, ro) from threshold up to co =~, including contribu-
tions from both spacelike (rv & k) and timelike (co) k)
regions. In practice, S~(k, co) can be measured up to
some energy co~,„&k by inelastic (e,e') scattering exper-
iments. The unobserved strength contributes roughly
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(5-10)% to the Coulomb sum [E&(k,r =0)] [16], but

this contribution decreases rapidly for finite r due to the

exponential damping factor exp( —rro). Precisely this

factor allows one to compare the calculated Euclidean

response directly to data, without the ambiguities associ-

ated with comparisons of Coulomb or energy-weighted

sums [16].
GFMC and related methods [17] have been successful-

ly used to study the ground-state properties of a wide

variety of strongly interacting many-boson and many-

fermion systems [18]. In particular, methods suitable for

the nuclear many-body problem, which allow the compli-

cated spin-isospin structure of the two- and three-nucleon
interactions to be treated in full, have been developed and
discussed in Refs. [15] and [19], and can be easily gen-
eralized to evaluate the Euclidean response. In essence,
GFMC involves evaluating the imaginary-time propa-
gator by splitting it up into many small steps
exp( —rH) =Q„-~exp[—(n/N)rH], choosing an accu-
rate approximation to the short-time propagator, and us-

ing Monte Carlo techniques to sample the propagator.
Inserting complete sets of position eigenstates into the

right-hand side of the equation defining E~(k, r ), we ob-
tain

~eI

Ep(k, r )+Ep,,)(k, r ) = dRdR'&Olp~~(k) IR'&&R'le ' ' IR&&RID�(k)IO&

where R and R' denote the initial and final positions of the particles relative to the center of mass. To evaluate this ex-
pression, we begin with a set of configurations drawn from a probability density proportional to the square of the wave

function, summed over all spin-isospin states. The original coordinates of the configuration are stored, and the ampli-
tudes separated into different components, each corresponding to a proton projection operator for a different particle.
These projected configurations are propagated using an importance-sampled propagator which incorporates the ratio of
the ground-state wave functions %'p(R')/%'p(R). Each step in the propagation can be used to produce the response at an
increasing value of r. The response is obtained as an average over these configurations:

A
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where N~(p) is the proton momentum distribution (nor-
malized to Z) in the ground state. This equation ignores
the initial energy distribution of the struck proton, replac-
ing it by an average separation energy E,. Indeed, the

where the sum over m runs over the sampled con-
figurations, and the spherical Bessel function jo is ob-
tained by averaging over the solid angle of the momen-
tum transfer. More general expressions are trivially ob-
tained in cases involving polarization, or if one wishes to
do a multipole analysis. The latter may be a useful tool
for investigating the continuum spectra of light nuclei. In
the present work, we have employed a variational wave
function [13] for the starting point of our calculation. In
order to correct for the most important deficiencies of this
approach, we normalize E~(k, r) by the matrix element
of &Olexp[ —r (H Ep)] IO&, which is just 1 for the exact
ground-state wave function. Corrections to this approxi-
mation can be determined by using configurations ob-
tained in ground-state Faddeev (A 3) or GFMC
(A 4) calculations as a starting point.

We have computed the Euclidean response functions
for deuterium (as a test of the method) and for the a par-
ticle. The He results are compared both with those of
PWIA calculations and with the experimental data. The
E~(k, r;PWIA) is obtained from the Laplace transform
of

S~(k, cp;P WIA)

calculation of the true PWIA response requires
knowledge of the spectral function P~(p, E); however, we

have taken P~(P,E) N~(p)b(E E, ). This fac—toriza-
tion is exact for the deuteron, but only approximate for
A & 2 [we take E, Ep( H) —Ep( He)]. As is easily
seen, E~(k, r 0;PWIA) 1, independent of momentum
transfer (and of the factorization approximation).
Hence, the PWIA violates the Coulomb sum rule, which
at low and intermediate k (k ( 500 MeV/c) is less than
1. This violation leads to the PWIA overprediction of
strength in the quasielastic peak.

The experimental E~(k, r;EXP) is obtained from the
measured longitudinal response. Obviously, this requires
truncating the co integral at some m co,„.In order to
estimate the contribution for co& co,„,we assume that
S~(k, rp & rp,„)is proportional to that of the deuteron,
which can be accurately calculated. The constant of pro-
portionality is then determined by requiring that the
Coulomb sum be satisfied exactly. We have verified that
this procedure yields tails which join the experimental
data smoothly, and that the energy-weighted sum is
within a few percent of that calculated by direct evalua-
tion in the He ground state [16]. The parametrization
described above is suggested by the proportionality of the
calculated energy- and energy-square-weighted sums in
the three- and four-body nuclei to those in the deuteron.
Indeed, at high ca the response is sensitive to short-range
nucleon-nucleon correlations, which are expected to be
rather A independent.

In order to assess the reliability of the present method,
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FIG. I. A comparison of E~(GFMC) and E~(EXACT) in

exp(s k /2m), so that (nonrelativistically) the Euclidean
response of a free proton would be 1. The shaded area denotes
the GFMC predictions within 1 standard deviation.

we compare the H E~(GFMC) with that obtained by
first calculating S~(k, co) with the exact two-nucleon
bound and scattering states, and by then evaluating the
Laplace transform. The two calculations are in excellent
agreement, as shown in Fig. l.

In Figs. 2 and 3 the He E~(k, z) calculated with the
GFMC method is compared with those obtained in the
PWIA, and by Laplace transforming the B t [3] d

ac ay 4] longitudinal data, both with and without the
estimated corrections of the high co tails. These tail con-
tributions are larger for the Saclay data than for the
Bates data, and typically are (5-10)% at r 0. Howev-

er, they decrease rapidly with r, and become negligible
for r &0.02 MeV '. At these values of r, E~(k, r) is

really sampling the strength in the quasielastic peak re-
gion. The effects of FSI are large, as indicated by the
difference between the GFMC and PWIA results, partic-
ularly at low k. Note that the FSI are included exactly
in the GFMC calculation. At low r, E (GFMC)

~(PWIA), as expected from sum rule considerations.
~ s P

However, at high r, the trend is reversed, indicating that
FSIS enhance the response on the low m side of the quasi-
elastic peak. This high r region emphasizes the low co

end of the continuum spectrum, which is strongly aff'ected

by collective excitation modes in the system.
We have also explored the possibility of inverting the

Laplace transform to obtain S~(k, c0). Direct numerical
inversion of such a transform is impossible, in general,
due to the statistical errors inherent in the calculation.
However, methods to obtain dynamic information from
Euclidean simulations are currently being developed [20].
In this particular case, we can exploit our knowledge of
the de ominant features of the response, a large quasielastic
peak with a long high-energy tail, to perform a least-

FIG. 2. Th 4The He Euchdean response functions (scaled as in

ig. 1) at k 300 MeV/c. The GFMC and PWIA results are
compared with those obtained from the Bates and Saclay data,
with and without inclusion of the high m tail corrections.
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FIG. 3. Same as Fig. 2, but at k 400 MeV/c.
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squares fit to the E~(GFMC). We parametrize

L

Ep(k, r;FIT) Ep(k, r;PWIA)+ g ai(k)FI(k, r ) .
I-1 '

A convenient set of functions FI is

F((k, r ) e
'

/[ +ra(ki)]

with a (k aa l. The coefficients ai are adjusted te o
inimize the g . In Fig. 4 we display the longitudinal

response function obtained by a three-parameter ntting
procedure (curve labeled GFMC), which already yields

the B
an excellent g2, along with the PWIA result dresu s, an

e Bates and Saclay data. By construction, the

RL, (GFMC-FIT) satis6es the Coulomb sum. It is worth

noting that a similar strength reduction was obtained in

the OCS calculation of the A 3 nuclei response func-
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FIG. 4. The 4He longitudinal response functions at k 400
MeVlc obtained from a fit of E~(GFMC) (curve labeled
GFMC) and in PWIA are compared with the Bates and Saclay
data.

tions as a consequence of the orthogonality imposed upon
the OCS wave functions describing the ground state and
two- and three-body breakup channels [9]. The approxi-
mate nature of treating the FSI in the OCS approach,
however, did not produce a large enough shift of strength
towards low ru.

To summarize, GFMC simulations of the He proton
response in imaginary time have been carried out for a
realistic nuclear Hamiltonian. The results of these calcu-
lations, in which FSI are included exactly, are in excel-
lent agreement with the experimental data. The present
method can be easily generalized to calculate other prop-
erties, such as Euclidean transverse response functions
with one- and two-body current operators, or Euclidean
proton spectral functions, of light nuclei. Because of the
special nature of these systems, it appears feasible to ob-
tain reliable estimates of these properties in real time.
Work in these areas is being vigorously pursued.
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