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It is proposed that the dimension D be used as a perturbation parameter. The coeScients in the re-
sulting dimensional expansion, a series in powers of D, can be obtained in both quantum-mechanical and
field-theoretic models. In this paper the first three terms in the dimensional expansion for the ground-
state energy density for a self-interacting p

" field theory are calculated. Dimensional expansions are
shown to provide accurate nonperturbative analytic results.

PACS numbers: 1 I. lO. Kk, 03.65.Ge

In this Letter we propose a new analytical method for
extracting nonperturbative solutions to problems in phys-
ics. The procedure consists of expanding the solution as a
perturbation series in powers of a nonperturbative param-
eter, namely, D, the dimension of space-time. In any per-
turbative approach it is essential to have an analytic solu-
tion to the unperturbed problem to be able to obtain
higher-order perturbative corrections analytically. The
advantage of our procedure is that the zero-dimensional
problem can usually be solved in closed form. Moreover,
the zero-dimensional solution already contains nonpertur-
bative information.

As an illustration of the nature of dimensional expan-
sions, consider the quantum-mechanical problem of a
particle confined to a spherically symmetric infinite po-
tential well in D-dimensional space:

point at D = —4 where Eo(D), E I (D), and E2(D) are de-

generate; a fourth-root branch point at D= —6 where

Eo(D), EI (D), E2(D), and E3(D) are degenerate; and so
on [1,2]. In Fig. l we have plotted the lowest four eigen-
values as a function of real D, —6.5 & D & 2. Note that
Eo(D) and EI(D) are complex conjugates for D & —2,
and E2(D) and E3(D) are complex conjugates for D
& —6.

Our principal objective here is to use dimensional ex-
pansions to obtain nonperturbative solutions to quantum
field theories in D-dimensional Euclidean space. The ad-

vantage of such a procedure is that the unperturbed prob-
lem is a zero-dimensional quantum field theory, which is

the simplest interacting quantum field theory that can be
solved in closed form. In this Letter we restrict our atten-
tion to a massless self-interacting scalar p

" quantum
field theory described by the Euclidean space Lagrangian

(gp) 2+ p2K (4)

The time-independent s-wave Schrodinger equation for
this particle is

—Iit"(r) —[(D —I )/r] Iit'(r) =Ey(r),
where we impose the boundary conditions Itt(0) finite,

Iit(l) =0. The eigenvalue E satisfies the quantization
condition J-I+Dt's(JE) =0, which determines E as a
function of D. The eigenvalue spectrum E„(D), n=0,
1,2, 3, . . . , can be expressed as series in powers of the di-
mension D:

For simplicity of presentation we limit our discussion to

60

40—

E„(D)= g a„ t, D" .
0

(3)
20—

These series can be used to calculate the eigenvalues to
great accuracy. We find that the radius of convergence
of the series for Eo(D) and EI(D) is 2, for Eq(D) is 4,
for E3(D) is 6, and so on. The radii of convergence are
determined by branch-point singularities on the negative
real axis in the complex-D plane. For all n, the functions
E„(D) are branches of a single analytic function E(D),
E(D) has a square-root branch point at D = —2 where

Eo(D) and E I (D) are degenerate; a cube-root branch

I I I I I I I I I I I I I

FIG. I. Eigenvalues E„(D), n =O, l, 2, 3, of the Schrodinger
problem in (2) plotted for —6.4 & D & 2.
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the problem of obtaining the dimensional expansion of
just one function AK(D) characteristic of the quantum
field theory, where AK(D) is the logarithmic derivative of
the vacuum energy density as defined below. The vacu-
um energy density F is defined by a functional integral

e = D][]exp — d xL (5)

where V is the volume of D-dimensional Euclidean space
and the measure is properly normalized. In terms of F
we define

(D) 2K I
—D/[2K D(K ——I)] dF

K = g (6)
g

Note that AK(D) is independent of an additive constant
in the ground-state energy due to the choice of the rnea-
sure of the functional integral in (5). Note also that the
definition of AK(D) contains the appropriate power of g
necessary to make AK(D) dimensionless. The dimension
expansion of AK(D) has the form

The normalization in (6) is chosen so that the coeffi-
cient a in (7), determined by evaluating the zero-dimen-
sional version of the functional integral in (5), is unity:

a =AK(0) =2Kg dF
dg

= —2' ln dx e
d —x~

dg

P OO

(8)

r

F=— ln 1+1
' dp 2g 1 g

2" (2~) p D 2ir

~ D/2

r(1 —D/2),

The higher-order coeIcients in the dimensional expan-
sion in (7) are more difficult to calculate. However, for
the special case of a free field theory (K =1) we can ob-
tain the entire dimensional expansion by solving for
AI(D) exactly. The functional integral in (5) is easy to
evaluate when K =1 because it is Gaussian.

We obtain for the free energy

AK(D) a+PD+ yD + (7) (9)
We describe below several ways to calculate the where we have omitted an infinite additive constant (in-
coefficients a, ]g, y, . . . . dependent of g) associated with the zero-point energy

field fluctuations. From (9) we obtain
g/2 r

AI(D) = 1

2x
1 1

——=1 ——[ln(2z) —y]+ [6ln (2z) —12yln(2z)+ir +6y ]+D D D 2 2

2 2 48
(io)

Note that the radius of convergence of this expansion is
2.

To test the convergence of this series numerically
we evaluate the sum at D -1 (the case of quantum me-
chanics) for which the exact answer is Ai(1) =2

0.7071068. . . . Of course, the Taylor series in (10)
converges at D 1. The sum of the first eleven terms in

the Taylor series is 0.70695. . . . However, we can sum
the series in (10) more efficiently if we form the diagonal
Pade approximants P„"(D). We obtain

PI (1)=0 6159728, P2 (1)=0.6930203,

P3 (1) 0.707 6109, P4 (1)=0.707 1068,

P((1) 0.7071074,

and so on, which converges quite rapidly to the exact re-
sult.

For the interacting theory (K) I) it is possible to find
the exact value of the coefficient P in (7) using analytical
means. To do so we add and subtract a mass term to L in
(4):

(i)[[I)2+ I ppi24]2+gy2K —I
/pi 2/2

where we choose ~ =g /

The Feynman rules for the weak-coupling expansion of
the Lagrangian in (11) are 1/p +m 2 for a line,—(2K)!g for a 2K-point vertex, and m for a 2-point ver-
tex.

The free energy density F of L in (11)can be expressed
as the sum of two quantities, F I +F2. FI is the ground-
state energy density of the free theory described by Lo.

L = —,
' (rip)2+ —'

For this free theory the exact result for F I [see (9)] is

D/2
1 mF)=- r(i —D/2),
D 4x

(12)

up to an additive constant independent of g. Note that
(12) is singular at D =0.

The energy density F2 is the sum of all connected vacu-
um graphs constructed from the Feynman rules above,
except for the polygon graphs contributing to F). All
such graphs are infrared and ultraviolet convergent for
0&D (2. Each graph when evaluated gives a function
of D which is finite at D =0 times m . Thus, since F)
in (12) is singular at D=O, F2 is already higher-order
correction in D compared to F). Hence, we can evaluate
all these vacuum graphs at D =0. The result for F2 is

f~ d
—x

F2= —m ln f" dxe ""
I/2

2 1= —m ln — I 1+-
lE' 2K
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Combining F
~ and Fq and using the definition of

Ax (D) in (6) we have

+ yD + e ~ ~2

connected strong-coupling
(~D) ~~ Jc —D E —1 1+2 D

vacuum graphs

where

A3(l) are 0.89065. . . and 1.02106. . . while the first two
terms in (14) evaluated at D = I give 0.597. . . (33%%uo rel-
ative error) and 0.657. . . (36% relative error).

A/r(D) = I ——ln 8e "e '+'/"I 1+ %e do not know how to calculate analytically the
coe%cient y of D in the dimensional series (14). How-

(14) ever, we now propose an approximate method for com-
puting the higher-order terms in this series. This method

The first two terms in this series give fairly accurate nu- is based on strong-coupling lattice techniques [3,4]. We
merical results at D=1. The exact values of A2(l) and briefly summarize the results below. First, the formula

t for Ag(D) is

[ a 2K —D(K —1)] —I/K (i 6)

is a dimensionless parameter which for fixed lattice spac-
ing a and large coupling constant g is regarded as small.
The I eynman rules for the vacuum graphs are
f) 6 (x —y) for a line and V2„=a "+ " ' e"L2„ for a
2n-point vertex, where L2„are numerical constants de-
pending on K. The first few L2„are

L, =r(3/2K)/r(l/2K),

L4 =r(5/2K)/r(I/2K) —31 '(3/2K)/r'(I/2K),

L = I (7/2K)/I (I/2K) —151 (3/2K) I (5/2K)/I (1/2K)

+ 30I (3/2K)/I ( I /2K ),

and so on. The details of this calculation are given in a

separate paper [5).
As is shown in Refs. [4,5], D-dimensional strong-

coupling lattice graphs are polynomials in the parameter
D having integer coefticients. Specifically, a vacuum

graph having n lines is a polynomial of degree n in D.
The lowest power of D in this polynomial is at least 1 and
for most vacuum graphs the lowest power of D is much
greater than 1. Therefore, only a small subset of all pos-
sible vacuum graphs can contribute to any given order in

the dimensional expansion (14). In Table I we give the
total number of nth-order vacuum graphs (those having n

lines), the number of graphs contributing to order D, and
the number of graphs contributing to order D .

Using the graphical rules we obtain from (15) a series
representation for A/r(D) in powers of D:

A (D) =e"/I"-"" '"[I+D[—2L e+2L'e' (6L' L'/3)—s'+(80—L,' 6L2L'+L'/6—0)e'+ ]

+D [(4L2+2L4)c —(12L2+6L2L4)e + (12L2+4LzL4)s

+ (60L p + 30L2L4 —20L2L4/3 —5L4L6/6) s'

—(180L2+36L2L4 —12L2L4 —L2L4L6)e + . ]+ j .

TABLE I. The number of graphs contributing in order D and in order D . Notice that
graphs having an odd number of lines contribute in order D . However, the total number of
O(D2) graphs is not much more than the number of O(D) graphs.

Number of
line n

1

2
3
4
5
6
7
8

10
ll

Number of graphs
in order D

1

1

0
2

0
3
0

10
0

25
0

Number of new graphs
to consider in order D

0
1

2

1

4
2
9
7

37
37

176

Total number of graphs
contributing in order D

1

2

3
4
5

9
17
37
52

176
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We have carried out this calculation to order s' in the
coefficient of D and to order e'' in the coefficient of D .

To obtain the dimensional expansion in (14) it is neces-
sary to extrapolate the series in (17) to its continuum
limit a 0 (which is equivalent to s ~). This extrap-
olation is done by converting (17) to Pade form and then
setting e to . The specific extrapolation procedure is
described in Ref. [5]. With this extrapolation procedure
we obtain the numerical value of the coefficient of D in

(14) accurate to between 5% and 10% (depending on the
value of K), and the coe%cient of D accurate to
Our final results are that

3 (D) =1 0.4028—4D+ (0.23+ 0.01)D +, (18a)

3 (D) 1
—0.34275D +(0.26 ~0.01)D + . (18b)

We can sum these series at D 1 to obtain numerical
predictions for A2(1) and A3(1). These predictions are
accurate to 7% for K =2 and 10% for K =3.

We wish to acknowledge early and very profitable dis-
cussions with F. Cooper. One of us, L.L., thanks the
Department of Physics at Washington University for its
hospitality. S.B. thanks the U.S. Department of Educa-
tion for National Need Fellowship support. We are
grateful to the U.S. Department of Energy for financial

support.

~"'~Permanent address: Leningrad Nuclear Physics Institute,
Gatchina, St. Petersburg l88 350, Russia.

[I] This interesting array of singularities is reminiscent of the
singularity structure in the complex coupling-constant
plane for the eigenvalues of the anharmonic oscillator.
See C. M. Bender and T. T. Wu, Phys. Rev. Lett. 21, 406
(1968); Phys. Rev. 1$4, 1231 (1968). See also C. M.
Bender, H. 3. Happ, and B. Svetitsky, Phys. Rev. D 9,
2324 (1974).

[2] The fact that the singularities in the complex-D plane
occur at negative even integers recalls the work of Dunne
and Halliday. They found that in negative even dimen-

sions the quantum statistics of bosons and fermions inter-
change. In view of this abrupt reversal it is not surprising
to find singularities at D —2, —4, —6, . . . . See G. V.
Dunne and I. G. Halliday, Nucl. Phys. B30$, 589 (1988);
G. V. Dunne, J. Phys. A 22, 1719 (1989).

[3] C. M. Bender, F. Cooper, G. S. Guralnik, and D. H.
Sharp, Phys. Rev. D l9, 1865 (1979).

[4] C. M. Bender, F. Cooper, G. S. Guralnik, R. Roskies, and
D. H. Sharp, Phys. Rev. D 23, 2976 (1981).

[5] C. M. Bender, S. Boettcher, and L. Lipatov (to be pub-
lished).

3677


