
VOLUME 68, NUMBER 25 P H YS ICAL R EV I EW LETTERS 22 JUNE 1992

Noise-Induced Transitions between Attractors in Time Periodically Driven Systems
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The stochastic Landau equation for a periodically driven process with either two discretely degenerate
attractors or a continuum of degenerate attractors is studied for small noise. We calculate analytically
the probability P" for the transition between the attractors leading to phase diffusion in the continuous
case. Our results are in good agreement with numerical simulations and in the discrete case also with

experiments on periodically driven Rayleigh-Benard convection. They explain the sensitive dependence
of P" on the equation's parameters.
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In a finite physical system possessing more than one at-
tractor there always exists a nonzero (though sometimes
negligibly small) probability to switch between the at-
tractors due to fluctuations. Of special interest is the case
of attractors that are degenerate due to symmetry. This
can happen continuously or discretely depending on the
underlying symmetry. A simple example is a (real or
complex) scalar quantity 3 (t ) governed by the stochastic
Landau equation:

tI, A =[a(t) —g~A ~']A+ Vert(t),

where rt(t) is Gaussian white noise with strength 1.
Note that if A is real the attractor is discretely degen-

erate whereas the degeneration is continuous [O(2) sym-
metry] for complex A (then we write tl=rI'+irt" with two
statistically independent noise terms). In the complex
case we will be particularly confronted with phase dif-
fusion because the change of the phase occurs completely
randomly caused only by the presence of noise.

Whereas much is known about the process (I) when a
(and g) is constant the situation is different for the time-

dependent case such as, e.g.,

a(t ) =a+ p sin(tot) .

Note that by scaling time in units of co
' and A in units

of (to/g) one is left with three dimensionless parame-
ters a—= a/to, p=p/to, and F =eg/to . So far there has

been numerical and analytic work on Eq. (1) for real A

[1-5] which was related to experiments on Rayleigh-
Benard convection in a fairly small container driven

periodically in time with a low period co so that the roll

patterns appear and disappear periodically [6]. The
change from "deterministic" (consecutive patterns
strongly correlated) to "stochastic" (weakly correlated)
behavior occurred rather suddenly with some critical
value of a (keeping p constant) and could be described by
a line a =a(p) in parameter space [1,3,6]. In the context
of pattern formation the real case corresponds to a
(small) system with fixed boundaries and up-down sym-

metry whereas the complex case describes the situation of
an annulus where the phase is completely degenerate.

One may also think of various physical realizations in

the context of equilibrium transitions. A particularly at-

Aoexp[1(to, t )]
h(« t)&2+ I] in (3)

[with the initial condition A "(to,Ao, to) =go] whe„e

h(to, t ) =2g, exp[21(to, r )]dr
g fp

(5)

can never cross the origin. Nevertheless, in the presence
of even small noise the transition probability can become
significant if A comes close enough to the origin. Note
that for long times [as h(to, t) becomes "large enough"]
all trajectories (with Au&0) converge against the periodic
attractors [5]

tractive one is the (electrically or magnetically driven)
splay-Freedericksz transition in nematic liquid crystals,
where one has an up-down symmetry corresponding to
the real case or the bend-Freedericksz transition where

one has the O(2) symmetry of the complex case [7].
In this Letter we present an analytical small-noise ap-

proximation for the transition probability which is in

good agreement with the numerical and experimental
work. Our work was inspired largely by Ref. [5] where

symmetric distribution functions were calculated. We ex-

ploit the fact that transitions between attractors mainly
occur when A is small where the corresponding linear
problem (Ornstein-Uhlenbeck process) can be solved

rigorously whereas the evolution in the nonlinear regime
is described deterministically. We are convinced that this

concept illustrated here by a simple example in one and

two dimensions will also be very useful for the treatment
of more complicated time-dependent systems with more
degrees of freedom.

In Ref. [3] a method to compute very eSciently the
full correlation function by an eigenfunction analysis of
the Kolmogorov operator is presented for the real case.
The results coincide in the range of validity of our ap-

proximation.
Considering first the real case we see that in the ab-

sence of noise the deterministic solutions of Eq. (I)
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exp[I(tp, t )]
A+' (t) = ~ lim

&0— ™h tp, t
(6)

o(t) =eexp[21(tp, t)]„,exp[ —21(tp, z)]dr .4 (p

lt is convenient to introduce the new variable

z =A/Vcr(t) for t & tp. (9)

Then the probability to find z at time t if A(tp) =Ap is
given by

P(z, tiAp, tp) = exp
1

2K

where

(z —zp) '
2

(10)

Ap
zp zp(t, Ap, tp)

4 f', exp[ —21(tp, z)]dz] ' '

= ~„, [Ad"(z, Ap, tp)]-'dz

In the last step we have made use of the linear-range ap-
proximation of Eq. (3): A "(t,Ap, tp) —Apexp[1(tp, t)].

From Eq. (10) one obtains for the transition probabili-
ty

Q OO

P"(t,Ap, tp) = exp — dy

zp=—erfc
2

(12)

[the Probability that A(t) (0 if Ap& 0] the (conjugate)
error function [9] depending only on zp. The integral in

~ [[exp(4@a)—I ]/h (t —T, t )] '/, for a & 0,
0, elsewhere,

(7)

where T=2tr/tp is the period of the system. Clearly in

deriving Eq. (7) we employed the periodicity of a(t)
[compare Eq. (2)]. We see that two different attractors
exist only for a & 0 and a =0 is the (deterministic) stabil-
ity limit of the solution A =0.

Let us focus on a trajectory with A )0 which ap-
proaches the origin as the coefficient a(t) of Eq. (I) is
negative. In the limit of small noise the trajectory will be
"close" to one of the deterministic trajectories given by
Eq. (3) if transitions across the origin have not yet oc-
curred. It is clear that the transition probability grows as
the trajectory approaches the origin so that it should be
instructive to regard a trajectory which has already come
sufficiently close to the origin so that the nonlinear term
of Eq. (I) can be neglected. In the linear regime our
problem corresponds to an Ornstein-Uhlenbeck process
whose Fokker-Planck equation is solved rigorously [8] by
a Gaussian probability distribution with variance

tl, In[A "(r,Ap, tp)]
X (13)

which depends on the behavior of the deterministic tra-
jectory at its minimum at t, i.e., at the point where
a(t ) =0 and B,a(t ) &0. We note that Eq. (13) can
be regarded as the small-noise approximation for any
comparable stochastic process. Consistent with our ap-
proximation Ap may even lie in the nonlinear regime.

Still the question remains which trajectories we have to
include in order to obtain the averaged transition proba-
bility of the system. Here we restrict our analysis to
ranges of parameters of a, tl, and 8 where "statistically
relevant" trajectories converge rapidly within one period
towards their attractors and can be considered to be prac-
tically on their attractors as they decrease into the linear
regime. This will happen if (A") (t )h(t —T, t )» I

[compare Eq. (3) [11]]which holds, as one can convince
oneself, for a &0.4. Then we obtain from Eq. (13)

(n2 2) I/4

z =tp " [A+(t*)l (14)

Approximating h (t —T, t*) in Eq. (7) by another appli-
cation of the method of steepest descent finally leads to

(n2 2) I/4

[A4(t )]2=tp ll —exp( —4xa)]
2gJx

x exp[4[a are sc(oa/P) —(P —a ) '/ ]] .

(15)

Note that for t. 0 we recover the deterministic stability
limit; i.e., the transition probability stays finite only for
a 0 [then Eqs. (14) and (15) yield zp cx:a/8].

Figure I shows lines of constant zp in the (a,P) plane
obtained with this formula together with experimental
results from Ref. [6] (squares). The value 8=—eg/tp= (0.0184) was measured independently. [Actually Fig.
1 can be used for other values of F as well by noting that
the quantity zpF is noise independent; compare Eqs.
(14) and (15).] For some values of zp we have listed P"
obtained from Eq. (12) in the inset of Fig. 2 and com-
pared the result with numerical simulations.

We note that the correlation function decays like
&A(t+nT)A(t)) =k i(A(t) ) in our approximation where
4|=1—2P" corresponds to the eigenvalue of the Kolrno-
gorov operator introduced in Ref. [3]. The average time
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Eq. (11) will be completely dominated by the maximum
of the integrand and thus practically independent of its
limits. This becomes even more obvious in our next step
of the approximation where we expand the exponent in

Eq. (11) around its maximum at time t* supposing the
limits of integration t and tp are far enough away from t*
(method of steepest descent [10]). This yields

[A d" (z,A p, tp)]'
zp t,Ap, tp
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This means h(t ~, tz)[A"'(t~)] (( I for t ~/z=t* Tht
[compare Eq. (3)]. Expanding the exponent in h(t~, tz)
around t then leads to the criterion

2 [A ' (t *) I 2 + i.s
h(t~, tq)[A"'(t~)] (

z ~,/4 J exp(y )dy
(p2 2) I/4

25z 028 «1.
(p2 2) I/2

Small noise is required for two diA'erent reasons. First if
noise is extremely strong convergence of the trajectories
in the nonlinear regime may be endangered and second

by making noise small enough we can ensure that the
transition from stochastic to deterministic behavior will

happen for parameters a and p where the attractors come
well inside the linear range [compare Eq. (18)].

Note that our approximation was possible because we

could show that in both the real and the complex cases
the influence of noise on the trajectories increases like
A as they approach the origin [compare Eq. (11)] so
that transition processes are completely dominated by the
neighborhood of t* where A has its minimum. Further-
more, the strong convergence (or focusing) of the trajec-
tories on the attractors together with the fact that the
minima of the attractors depend exponentially on a and P
[compare Eq. (14)] appears to be the cause for the sensi-
tive dependence of the transition rate on the parameters a
and P which we have mentioned in the beginning of this
Letter.
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